介绍了一种用于增材制造 (AM) 的沉淀硬化 (PH) 不锈钢 (SS) 设计的遗传算法。研究发现,完全马氏体基体是实现最大强度的关键因素,但与早期研究不同的是,还考虑了 AM 独有的原位时效处理,从而促进了 AM 过程中富铜沉淀物的沉淀。将设计理论集成到遗传算法优化框架中,以最大限度地提高强度和可打印性。通过使用激光粉末床熔合 (LPBF) AM 制造新型合金部件,进行了实验概念验证,并将其与商业 LPBFed 17-4 PH SS 进行了比较。结果与设计策略目标一致。设计合金的优异机械性能主要归因于两个因素的结合:沉淀硬化和位错强化。沉淀硬化是提高 LPBF 新型 PH SS 屈服强度的主要原因,其原因是打印过程中位错增殖和湮没导致基体位错密度升高。
功能梯度材料 (FGM) 的概念是为了开发高性能耐热材料而提出的,其中耐热陶瓷与金属混合[1]。FGM 是一类先进的异质材料,其成分和性能表现出可控的空间变化,从而导致其性能 (热/电导率、耐腐蚀、机械、生物化学等) 逐渐变化。FGM 背后的主要思想包括一种不能满足所有设计要求的材料和一种适用于特定位置和操作条件的不同材料。由于这种协同效应,FGM 可应用于不同领域,例如生物医学、汽车和航空航天、电子、光学、核应用、反应堆部件和能量转换 [2]。FGM 的特点是材料之间可以逐渐转变,也可以不连续/突然转变。对于突然转变(直接界面),部件会承受巨大的应力和化学不相容性。相反,连续/渐进的转变可以最大限度地减少这些问题,并改善界面处的机械性能 [3、4]。基于电弧的定向能量沉积(DED-arc),通常称为线材和电弧增材制造(WAAM),是制造 FGM 的一种很有价值的制造技术。使用配备多个独立线材送料器的机器可以轻松进行其生产,从而可以创建在多个方向上具有成分和性能梯度的部件。同时使用两根线材被称为双线和电弧增材制造 (T-WAAM)。尽管如此,在同一熔池中结合两种材料会带来令人困惑的挑战,包括可能形成不良的金属间化合物,这会降低可焊性/可打印性(例如,由于形成热裂纹和高硬度区域)并导致过早失效 [2]。此外,热膨胀系数不匹配、熔化温度差异以及溶解度不足都会导致开裂和脆化 [5]。每根焊丝不同的热物理性质也意味着确保零件无缺陷所需工艺参数存在显著差异。316L 不锈钢与 Inconel 625 的 FGM 用于化工厂、石油天然气和核工业应用。特别是在堆焊管道和阀门中,零件插入两种不同的环境中,需要不同的耐腐蚀和耐磨性(内部接触腐蚀性流体,例如含有高 CO2 和 H2S 的原油,外部接触大气 [6e8])。尽管 Inconel 625 的这些性能更胜一筹,但在结构件的关键区域用不锈钢替代 Inconel 可以降低相关部件成本。两种合金的基质均为单个面心立方 (FCC) 相 (g),主要合金元素为 Fe、Cr 和 Ni。根据工艺和制造策略,可能会出现一些问题,其中热裂纹尤为普遍。Shah 等人 [9] 使用激光定向能量沉积 (L-DED) 分析了工艺参数对 316 不锈钢到 Inconel 718 FGM 制造的影响。作者没有证明由激光诱导裂纹的证据
I. 构建几何形状对增材制造 316L 零件微观结构发展的影响 A. Leicht、U. Klement、E. Hryha Mater. Charact. 143 (2018) 137–143 II. 零件厚度对激光粉末床熔合制造 316L 零件微观结构和力学性能的影响 A. Leicht、C. Pauzon、M. Rashidi、U. Klement、L. Nyborg、E. Hryha 已提交出版 III. 工艺气体和扫描速度对 L-PBF 制造的薄 316L 结构的性能和生产率的影响 C. Pauzon、A. Leicht、U. Klement、P. Forêt、E. Hryha 已提交出版 IV.扫描旋转对激光粉末床熔合生产的 316L 零件微观结构发展和力学性能的影响 A. Leicht、CH Yu、V. Luzin、U. Klement、E. Hryha Mater。Charact。163 (2020) 110309 V. 工艺参数对激光粉末床熔合生产的 316L 零件微观结构、抗拉强度和生产率的影响 A. Leicht、M. Rashidi、U. Klement、E. Hryha Mater。Charact。159 (2020) 110016 VI. 通过增加层厚度提高 316L 激光粉末床熔合的生产率:对微观结构和力学性能的影响 A. Leicht、M. Fischer、U. Klement、E. Hryha、L. Nyborg 已提交出版
摘要 采用综合系统动力学模型 WORLD6 评估不锈钢对社会的长期供应,同时考虑可提取的原材料量。这是同时处理四种金属(铁、铬、锰、镍)的结果。考虑到合金金属锰、铬和镍的供应,我们评估了可以根据需求生产的不锈钢数量以及生产时间。可提取的镍量很少,这限制了可以生产多少不同质量的不锈钢。模拟表明,镍是不锈钢生产的关键元素,稀缺性问题取决于镍供应和回收系统的管理程度。研究表明,不锈钢产量很可能在 2055 年左右达到最大产能,然后缓慢下降。该模型表明,含锰-铬-镍类型的不锈钢将在 2040 年左右达到产量峰值,由于镍供应限制,产量将在 2045 年后下降。钴、钼、钽或钒等金属的产量太小,无法替代缺失的镍。这些金属本身作为超级合金和特种钢以及其他技术应用的重要成分是有限的。由于稀缺性,不锈钢价格上涨,我们预计回收率会上升,并在一定程度上缓解下降趋势。在回收率超过 80% 的情况下,镍、铬和锰的供应将足够几个世纪。
金属合金的添加剂制造(AM)显着提高了科学/工程的不同领域,并具有繁荣的未来趋势。尽管该技术对智能材料的开发也非常有吸引力,但创建预编程的“第四维”属性以响应外部刺激是一个重要的挑战。在这里,我们报告了对不锈钢基磁合金的3D打印,并详细介绍了优化用于致动和传感的磁化和磁截图的方法。通过控制打印参数和烧结过程,我们能够调整17/4 pH不锈钢的磁性和磁弹性特性,以具有成本有效优势的材料制造多功能。比较了未经不锈钢17/4 pH样品(AP)和烧结钢(SS)阶段。在发达的SS样品中,饱和磁化量显着增加了18%,但可实现12.6%的胁迫。此外,与AP样品相比,SS样品开发了54%的磁性磁通作用。加,SS样品的各向异性能量K 1的差异也较低。在打印过程的每个阶段都报告了结构和磁性控制,这表明了3D可打印的金属传感器和执行器的开发和优化前景。
摘要 采用综合系统动力学模型 WORLD6 评估不锈钢对社会的长期供应,同时考虑可提取的原材料量。这是同时处理四种金属(铁、铬、锰、镍)的结果。考虑到合金金属锰、铬和镍的供应,我们评估了可以根据需求生产的不锈钢数量以及生产时间。可提取的镍量很少,这限制了可以生产多少不同质量的不锈钢。模拟表明,镍是不锈钢生产的关键元素,稀缺性问题取决于镍供应和回收系统的管理程度。研究表明,不锈钢产量很可能在 2055 年左右达到最大产能,然后缓慢下降。该模型表明,含锰-铬-镍类型的不锈钢将在 2040 年左右达到产量峰值,由于镍供应限制,产量将在 2045 年后下降。钴、钼、钽或钒等金属的产量太小,无法替代缺失的镍。这些金属本身作为超级合金和特种钢以及其他技术应用的重要成分是有限的。由于稀缺性,不锈钢价格上涨,我们预计回收率会上升,并在一定程度上缓解下降趋势。在回收率超过 80% 的情况下,镍、铬和锰的供应将足够几个世纪。
本文档以及派克汉尼汾公司、其子公司和授权经销商提供的其他信息为具有技术专长的用户提供产品和/或系统选项以供进一步研究。请务必分析应用程序的所有方面,包括任何故障的后果,并查看当前产品目录中有关产品或系统的信息。由于这些产品或系统的操作条件和应用多种多样,用户应通过自己的分析和测试,自行负责最终选择产品和系统,并确保满足应用程序的所有性能、安全和警告要求。
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。