运输对我们单独生产的温室气体(GHG)的量比其他任何东西都多。对运输做出不同的选择是我们减少碳足迹的最重要方法之一。1大大减少旅行年度会议的气候影响的一种方法是使用一种气候影响较低的旅行形式。可能很难对各种活动产生的碳排放量进行确切的估计,除了选择主要运输之外,这会因其他因素而异(例如,您是否需要从目的地朝相反的方向开车才能到达机场或火车站?路线是直接的,还是您的飞机或火车穿过为您的行程增加数英里的轮毂吗?)。某些气候影响计算为碳排放,而其他计算则试图考虑其他气候影响(例如,其他气体的排放,空中旅行中的冷凝道径对气候的不利影响)。
新兴科学正在促进对患有慢性阻塞性肺部疾病(COPD)患者心肺风险的更好理解,以及新方式和递送机制的潜在机会,以减少这些心肺事件 - COPD死亡率的主要驱动力。在这里,GP合作伙伴兼现场首席研究员Pete Wilson博士以及英国阿斯利康州Astrazeneca的医学事务呼吸系统负责人Yang Xu讨论了潜在的下波动创新的潜力,以解决心肺风险,以改善COPD患者的结果。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
建立圣训语料库之后,提取圣训来研究表示其含义的不同方法。主要测试了两种方法:基于知识的方法和基于深度学习的方法。为了应用前者,列举了现有的伊斯兰本体,其中大多数是用于《古兰经》的。由于《古兰经》和《圣训》属于同一领域,因此使用基于语料库的评估来检查这些本体对《圣训》的覆盖程度。结果表明,最全面的《古兰经》本体仅涵盖了 26.8% 的圣训概念,并且扩展它的成本很高。因此,通过构建和评估各种深度学习模型来研究第二种方法,该模型用于二元分类任务,该任务用于检测《圣训》和《古兰经》之间的关联性。结果表明,当前模型达到人类水平理解此类文本的可能性仍然有些难以捉摸。
具有有利的电化学特征的2D/2D异质结构(HTS)的生产具有挑战性,特别是对于半导体过渡金属二甲硅烷基(TMDS)而言。在这项工作中,我们引入了一项基于CO 2激光绘图仪的技术,用于实现包括氧化石墨烯(RGO)和2D-TMDS(MOS 2,WS 2,MOSE 2,MOSE 2和WSE 2)的HT膜。该策略依赖于激光诱导的异质结构(LIHTS)的产生,在辐照后,纳米材料在形态和化学结构中显示出变化,成为导电易于转移的纳米结构膜。LIHT在SEM,XPS,Raman和电化学上详细介绍了LIHT。激光处理诱导GOS转化为导电性高度去角质的RGO,并用均质分布的小型TMD/TM-氧化物纳米片装饰。所获得的独立式LIHT膜被用来在硝酸纤维素上构建独立的传感器,其中HT既可以用作传感器和传感表面。所提出的硝酸纤维素传感器制造过程是半自动化和可重现的,可以在相同的激光处理中生产多个HT膜,并且模具印刷可以定制设计。证明了不同分子(例如多巴胺(神经递质),儿茶素(黄酮醇)和过氧化氢)在电分析检测中的卓越性能,从而获得了生物学和农业样本中的纳米摩尔限制,并获得了高纤维抗性的纳摩尔限制。考虑到强大而快速的激光诱导的HT产生以及涂鸦所需模式的多功能性,提出的方法是通过可持续和可访问的策略开发电化学设备的破坏性技术。
参照欧盟金融工具市场指令 2014/65/EU(“MiFID II”):本报告不提供行动建议,提供可供公众免费使用的信息,因此不构成 MiFID II 定义的“研究”。这是因为本报告仅包含有关一种或多种金融工具或发行人的事实信息,并未明确或隐含地推荐或建议投资策略。因此,它不构成欧盟市场滥用条例(“MAR”)第 3(1)(35) 条与 MAR 第 3(1)(34) 条结合定义的投资建议。有关更多信息,请参阅 ESMA 指南 ESMA70-145-111 第 12 版。
摘要:我们表明,通过扩展主动推理框架,可以在目的论框架中制定目标导向的行动规划和生成。所提出的模型建立在变分递归神经网络模型上,具有三个基本特征。这些特征是:(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察来理解目标;(3)该模型根据从过去的感官观察推断出的当前状态的最佳估计,为给定目标生成未来的行动计划。通过在模拟移动代理以及执行对象操作的真实人形机器人上进行实验来评估所提出的模型。
有传闻表明,南非中小企业(SME)虽然可以使用人工智能(AI)工具作为其企业资源规划软件的一部分,但并没有采用这些工具。这被视为一个问题,因为中小企业部门是经济增长的基础,而该部门采用人工智能可以增强其在全球舞台上的竞争力。因此,本研究的目的是了解这种缺乏采用的情况。这项定性研究遵循解释哲学和归纳方法。从各个行业部门中选出了七家中型公司,并对每家公司的高管进行了采访。研究结果表明,尽管参与者通常清楚地了解采用人工智能的好处并能阐明用例,但仍存在阻碍采用的抑制因素。这些抑制因素中最重要的是担心失去对关键业务流程的控制权,而将其交给基于机器的算法,以及认为 IT 成熟度不足,无法采用和管理这些人工智能工具。这些发现的价值在于,它们提供了对人工智能采用障碍的理解,并强调了南非依赖非正式网络来指导采用决策的特点。