摘要:营养不良是本世纪最大的公共卫生挑战之一,在全球范围内受到了约20亿人的影响。生物强化是将微量营养素特征繁殖为主食食品作物的过程,这是可以生物利用的,可以对每天吃这种订书钉的人群产生积极的衡量影响。这是现有市场干预措施本质上具有成本效益,可持续的战略和补充。铁珍珠小米,铁豆,维生素A木薯和橙色红薯可以为增加亚洲和非洲的家庭营养做出贡献。多年来,合作伙伴在农作物育种,营养研究和分娩经验中收集的证据将有助于建立基础,以进一步扩展到达到最需要的数百万。
布勒的宗旨是创造创新,创造更美好的世界,并在所有决策过程中平衡经济、人类和自然的需求。数十亿人每天都接触布勒技术,因为这些技术满足了他们对食物和出行的基本需求。每天有 20 亿人享用由布勒设备生产的食物;10 亿人乘坐使用布勒解决方案生产的零件制造的汽车出行。无数人戴眼镜、使用智能手机、阅读报纸和杂志——所有这些都依赖于布勒工艺技术和解决方案。凭借这种全球影响力,布勒拥有独特的优势,可以将当今的全球挑战转化为可持续的业务。
TAK报告中报告的数字在倾销保证金评论2:商业是否应调整房屋市场间接销售费用变量以准确反映正确的货币评论3:商业是否应调整美国销售宇宙在此程序评论中捕获所有相关销售4:商业是否应计算出一个房屋市场销售VI的报告计费调整的正常值净值。建议
新闻发布产品开发产品开发PP土地图的Oerlikon Neumag纤维技术中心的主食纤维纤维到达新质量级别Neumünster(德国),2024年3月14日 - 新的主食纤维技术中心Neumünster-基于Neumünster-neumukon Neumag的新型固定型工厂Neumag的新闻,这是在2022年开放的各个过程中,现在还可以在2022年开放,现在,该公司的持续时间是,现在是在2022年开放的。聚合物。超现代技术中心最初着重于聚酯纤维的进一步开发。针对土工布应用程序的聚丙烯内联测试,在聚丙烯土工杂物应用的内联过程中,具有良好的纤维生产者实现了出色的效果联合测试。延伸率较高。这意味着纤维超过了土工布应用程序中当前建立的参数。“对土工布的需求正在增长,交通量更高,气候极端增加,” Oerlikon Neumag开发负责人Friedrich Lennemann博士说。“我们看到纤维朝着更高的韧性和高伸长率结合在一起的趋势。鉴于取得的结果,我们相信我们的客户有能力通过我们的技术来满足这一趋势。”高科技主食技术中心支持2100平方米的新纤维产品的开发,为所有感兴趣的纤维制造商提供了使用当前的主食技术和工艺。模块化纤维带处理线允许所有组件的可变组合,以便重现相应的过程。广泛的分析选项为进一步发展提供了详细的发现。感兴趣的各方还可以在法兰克福的TechTextil上找到有关产品范围的更多信息,在那里,Oerlikon业务部门人造纤维将在VDMA摊位中代表。
日益加剧的气候波动威胁着世界粮食安全,因为这些是限制农业生产的非生物和生物胁迫的主要驱动因素(Rosenzweig 等人,2014 年)。非生物胁迫,例如过冷或过热、降水或干旱以及土壤盐分或钠化,是植物在应对气候变化时经历的一些最常见的胁迫类型(Ashraf 等人,2018 年;Barmukh 等人,2022 年;Soren 等人,2020 年;Varshney、Barmukh 等人,2021 年)。温度波动,尤其是极寒天气,可能导致小麦(Triticum aestivum)、水稻(Oryza sativa)和玉米(Zea mays L.)等主要谷类作物遭受寒害。这些作物要么天生不适应这种寒冷条件,要么没有专门为这种寒冷条件培育(Dolferus,2014;Janksa 等人,2010;Solanke 等人,2008)。在零度以下的条件下,细胞内或细胞外都会形成冰晶,生物膜通透性会发生变化,并产生活性氧 (ROS)。这些变化导致了一系列症状,例如发芽困难、幼苗活力下降或生长受阻、叶片变小、叶片变黄枯萎、分蘖减少、根系增殖不良、植物水分关系紊乱、养分吸收受阻、抽穗过早、种子败育增加、种子大小减小,从而导致产量下降 (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et al., 2015 ; Oliver et al., 2002 ; Wang et al., 2013 )。
日益增加的气候波动威胁到世界粮食的确定性,因为这是限制农业生产的非生物和生物压力的主要驱动因素(Rosenzweig等,2014)。的非生物应力,例如过度冷或热,降水或干旱的发作以及土壤盐度或苏迪克,代表了植物在气候变化中经历的一些最常见的压力(Ashraf et al。,2018; Barmukh et al。,2022; Soren等,2020; Soren et al。,2020; Varshey; Varshey,Barmuke,barmukh et al a al al a al an a al a al a al an a al a al。温度波动,尤其是极度冷的发作,可能导致主要谷物作物(例如小麦(Triticum aestivum),大米(Oryza sativa)和玉米(Zea Mays L.))的寒冷损伤。这些农作物不是自然地适应或未专门为这种冷条件而繁殖(Dolferus,2014; Janksa等,2010; Solanke等,2008)。在零下条件下,冰晶体的形成,生物膜的渗透性改变以及细胞内或细胞外的活性氧(ROS)的产生。These changes result in a combination of symptoms like poor ger- mination, reduced seedling vigor or stunted growth, reduced leaf size, leaf yellowing and withering, reduced tillering, poor root proliferation, disturbed plant water relations, impeded nutrient uptake, premature heading, increased seed abortion, and reduced seed size leading to reduced yield (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et Al。,2015年; Oliver等人,2002年;
在核酸纳米技术中,纳米级结构是由DNA或RNA的合理设计的链自组装的(1,2)。核酸的碱基配对特性使它们成为可编程的可编程材料,它可以使结构具有高精度和复杂性的组装,其中包括目前多达数万个核苷酸。DNA和RNA折纸(3,4)是两个强大的,广泛的设计范式,可以指导如何通过精心构成的辅助链或kisterifs sistaple staple strands-spaple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple strander-s in dna s in dna s in of dna procrant-s s of dna staple strands s in dna s in''' RNA折纸中的主题)。两种方法都已用于设计各种2D形状和3D结构(5,6)。大多数当前的3D折纸设计遵循在彼此顶部包装几层螺旋螺旋或螺旋束的方法,和 /或弯曲的螺旋束如最初建议的< / div>
纳米管是由 DNA 制成的圆柱形结构,具有中空的核心,可用于药物输送或作为合成纳米线的模板。 在创建纳米管时,我们必须首先设计一条由 100-200 个核苷酸组成的长支架链。 然后,添加垂直于支架链的订书钉链,以形成宽度约为 25-50 纳米的矩形。 形成矩形后,我们可以添加更多订书钉链来封闭两端并创建一个管子。 然后,在使用 DNA 折纸技术折叠时,我们可以将支架和订书钉链在缓冲溶液中混合在一起,然后慢慢冷却溶液,使 DNA 链利用互补碱基配对自组装成所需的纳米管结构。 我们可以使用原子力显微镜 (AFM) 或透射电子显微镜 (TEM) 等成像技术来验证 DNA 纳米管的结构。 具有正确数量的交叉点,DNA 纳米管是一种高度稳定的结构,可以承受高温、极端 pH 条件和其他恶劣环境。这使得它们可用于生物技术和材料科学应用。
小麦是一种广泛种植的草,是一种谷物,是全球主食。构成了小麦的许多种类;最广泛的生长是小麦(T. aestivum)。小麦的营养价值极为重要,因为它在少数农作物物种中占据了重要地位,作为主食食物来源。小麦的重要性主要是由于其种子可以被磨碎成面粉,泥粉种类等,而面粉,米果酸酯等形成了面包和其他面包店的基本成分以及意大利面,因此它为世界上大多数人群提供了营养的主要来源。如果满足估计的世界人口增长的粮食需求,则预测对谷物的需求将大大增加。,但对这些社区还有另一个潜在的好处,这是确保这种主食作物在营养上是基本的,并有助于消除困扰他们的数百万个与营养相关的缺乏疾病。应该强调的是,在过去,没有一个例子,植物是为了改善其营养含量的。如果发生这种情况,则纯粹是偶然的,而不是设计[5-7]。小麦谷物是椭圆形的,尽管不同的小麦的谷物范围为
