根据同行评审的研究,人工智能 (AI) 和基于云的协作平台在灾难响应中收集数据,以根据紧急情况的复杂性提出具体计划 (Gupta et al., 2022)。 (RF) 算法找到影响家庭疏散准备时间的因素 (Rahman et al., 2021)。人工智能和基于云的平台通过 (众包) 协调人道主义需求 (Gupta et al., 2022)。人工智能和基于云的系统向应急响应人员提供必要的信息;该方法还有效地分配资源以进行响应 (Gupta et al., 2022)。地理人工智能灾难响应通过提供准确的地图分析,使灾难响应人员能够获得精确的信息 (Demertzis et al., 2021)。最先进的深度学习方法可以检测卫星图像的变化,从而实现高效响应 (Sublime & Kalinicheva, 2019)。 AGRA (AI) 是一种增强地理路由方法,可改善路由问题 (Chemodanov 等人,2019)。早期预警通过应用 AI SVM 分析可用数据,为监控室做出洪水或无洪水的决策,从而促进受影响人群在灾难中的撤离 (Al Qundus 等人,2022)。结合人工神经网络 (ANN) 和互联网 (IoT) 以及基于人工智能/机器学习 (ML) 的 ANN 的洪水预报方法可用于早期洪水预警系统。通过人工智能 (AI) 和机器学习 (ML) 的集成系统、地理信息系统 (GIS) 与无人机 (UAV) 方法以及在灾难期间寻找最安全疏散路线的路径规划技术,保护弱势群体免受洪水灾害 (Munawar 等人,2022)。人工智能与 UNOSAT 一起对受灾地区的地图进行高级分析,以进行早期预警 (将人工智能融入卫星,2021)。根据在线调查,不同的因素影响公众对在灾难中应用人工智能的看法。为人工智能系统用户提供了指南,以确保系统的责任。(Yigitcanlar 等人,2021 年)。