在过去的几十年中,微型和纳米化方法的演变显着刺激了心脏组织工程的进步。微型和纳米级的工程允许使用心肌细胞重建心脏组织。人类诱导的多能干细胞的突破扩大了该领域,使成人细胞的人体组织可能发展,从而避免了使用胚胎干细胞的伦理问题,但也会产生患者特异性的人类工程组织。在心脏的情况下,源自人类诱导的多能干细胞和微/纳米工程设备的心肌细胞的组合引起了心脏病的新治疗方法。在这篇综述中,我们调查了用于心脏组织工程的微型和纳米化方法,范围从干净的室内图案(例如光刻和等离子体蚀刻)到静电纺丝和添加剂制造。随后,我们报告了心脏培养系统微流体的主要方法,所谓的͞hğăƌƚŽŷcśŝɖ͟,我们评估了它们对心脏病建模和药物筛查平台的未来开发的效力。
摘要。半自主车需要监视驾驶员检查他是否正在监督系统和/或准备接管。大多数汽车都依靠方向盘传感器来检测手,并且不监视驾驶员可能执行的非驾驶相关任务。我们提出了一个带有多个分支体系结构的基于摄像头的系统,该系统在代表次要任务和平板电脑位置的平板电脑上提供了方向盘上的手数。它还解决了其他基于摄像头系统的常见问题:转向轮前的自由手可以归类为抓住它。此外,我们的系统处理驾驶员可能在方向盘上使用平板电脑的情况,因为他可以在自主模式下进行。这两个点对于评估驾驶员需要接管的时间至关重要。最后,将方向盘和相机系统都结合在一起也将使车辆更难欺骗,因此更安全。视频可用:https://www.youtube.com/watch?v=qfyom4sdwr4
摘要 - 本文介绍了两种用于 42V 嵌入式应用的旋转电机设计程序。具体来说,对于电动助力转向,设计了由开关冗余功率转换器供电的三相内置式永磁同步电机 (PMSM) 和由新型六开关转换器供电的六相感应电机 (IM6),用于未来的 42V DC 系统。对于 PMSM,磁路已完全使用基于分析和有限元的软件优化进行设计。对于 IM6,使用了来自传统三相鼠笼式低功率感应机的经典磁路。根据功率重量比比较了最终设计结果。关键词:永磁同步机 - 感应机 - 容错设计 - 电动助力转向
自主水下机器人执行运动和操纵任务,这肯定需要高精度定位。当前研究的主要目的是制定一个精确的位置稳定系统 PPSS,以确保机器人的位置稳定和正确的方向。PPSS 系统应独立于主驱动器运行。主驱动系统负责良好的导航。PPSS 系统具有单独的电动执行马达。电动驱动器允许机器人在浸没条件下工作并无人值守充电。本文介绍了 PPSS 系统的功能结构、整体算法的一些操作元素、用 Matlab 软件编写的仿真模型和示例仿真结果。通过仿真模型研究机器人在计划的航行过程中的运动
摘要。磁性纳米颗粒提供了许多有希望的生物医学应用,例如磁性药物靶向。在这里,人体内部的磁性药物载体通过外部磁场将其针对肿瘤组织。但是,治疗的成功很大程度上取决于药物载体的量,达到了所需的肿瘤区域。此转向过程仍然是一个开放的研究主题。在本文中,先前对线性halbach阵列的研究是由额外的halbach阵列所表明的,在两个相邻磁体之间具有不同的杂志角度,并使用comsol多物理学进行数字化。hal-bach阵列用永久磁铁排列,并在具有强梯度的同时,将相对较大的区域较大,高磁场。这会以强烈的磁力为单位,将许多颗粒捕获在磁铁处。之后,为避免粒子团聚,将halbach阵列闪烁到其弱的一侧。因此,计算具有磁化方向不同星座的不同HALBACH阵列的磁性弹力密度,其梯度和所得的磁力。由于梯度的计算可能会导致由于COMSOL中使用的网格而导致的高误差,因此通过研究两个不同的拟合函数来得出梯度分析。彻底的是,具有90°移动磁化的阵列表现最佳,轻松更改阵列的磁性边,并扭曲更多的颗粒。此外,结果表明,与SPION上的其他现有力相比,磁力在磁体下方占主导地位。总而言之,结果表明磁力,因此可以使用低成本的永久磁铁来对颗粒被洗净的区域进行验证。
随着儿童的成长,他们对特定媒体渠道的依赖发生了显著变化。对于年轻的 Alpha 世代(<11 岁),YouTube 视频是品牌发现的主要来源,其次是电视广告和社交媒体。随着他们过渡到 11-14 岁年龄段,社交媒体成为主导渠道,电视广告保持影响力,网络影响者成为关键驱动因素。当孩子们达到 15-17 岁年龄段时,社交媒体巩固了其作为品牌发现主要平台的地位,YouTube 视频和电视广告位列前三大渠道(见图 8)。这一进展凸显了从更广泛的一般平台向更个性化、影响者驱动的内容的转变。
摘要 量子操控是一种具有独特非对称性的量子关联,在非对称量子信息任务中具有重要的应用。我们考虑一种新的量子操控场景,其中两量子比特 Werner 态的一半由多个 Alice 依次测量,另一半由多个 Bob 测量。我们发现,当测量设置数 N 从 2 增加到 16 时,可以与单个 Bob 共享操控权的最大 Alice 数量从 2 增加到 5。此外,我们发现一个违反直觉的现象,即对于固定的 N ,最多有 2 个 Alice 可以与 2 个 Bob 共享操控权,而允许 4 个或更多 Alice 与单个 Bob 共享操控权。我们通过计算初始 Werner 态所需的纯度进一步分析了操控共享的稳健性,其下限从 0.503(1) 到 0.979(5) 变化。最后,我们证明了如果采用初始非对称状态或非对称测量,我们的双侧顺序转向共享方案可以用于控制转向能力,甚至转向方向。我们的工作深入了解了转向共享的多样性,并且可以扩展到研究应用顺序模糊测量时的真正多部分量子转向等问题。
研究深脑刺激(DBS)的临床研究提供了其在帕金森氏病(PD)(PD)和肌张力障碍(1)等运动障碍中运动症状治疗中的有效性的证据。深脑刺激涉及通过定义振幅,宽度和频率的电脉冲来刺激特定的大脑结构。脉冲是由通过植入的电线连接到靶向位于特定脑结构邻近的电极阵列的植入脉冲发生器(IPG)生成的。阵列中的电极可以具有环形或分段(即定向),后者的径向跨度较小,可以传递更大的局灶性刺激,从而导致临床良好的效果(2-6)。然而,DBS中的方向潜在线在植入程序中涉及新的挑战,因为方向引线的最终方向通常会随着预期的方向而偏离(7)。因此,取决于IPG的电子架构的引导刺激场的准确性在方向性DBS中起重要作用。市售的DBS系统使用电压控制或电流控制的电子体系结构。电压控制的系统在刺激的电极处设置了固定电压,而电流受控系统设置了固定的电流(8)。这两个架构可以合并单个源或多个来源来生成脉冲。单源体系结构可以通过同时激活一个电极或多个电极来传递刺激。在后一种情况下,称为共激活(9),由单个源控制的脉冲振幅将根据激活电极的阻抗的比率按比例分配。因此,为了共同激活,更多的电流会流过较低阻抗的电极。多个源体系结构可以明确指定由每个同时激活的电极独立传递的脉冲振幅。这种体系结构与电流受控体系结构相结合,可确保将传递给每个电极的总电流保持恒定,而不管总电极阻抗中的变化如何或活性电极之间的阻抗比。此功能可以控制DBS中的刺激场的控制转向(10)。多个独立电流控制技术(MICC)是多源和当前控制体系结构组合的一个示例。具有单一源或多个源体系结构的商业刺激器,还可以通过通过铅或电极传递多个脉冲序列来控制刺激时间。从历史上看,DBS中的这种能力被称为交织(11),最近被称为多刺激集(MSS)刺激(9)。交织/MSS涉及替代方案,因此不同时激活具有定义的脉冲振幅(电压或电流)的单电极,从而导致多个刺激率局部的交替(打击)产生。相互交织/MSS被建议作为刺激场转向选项,因为在这些刺激场的交点中,神经组织的频率将比在交叉点外(12)刺激。
DAC(数模转换器)在生物医学仪器、通信系统、机器人等各个领域发挥着重要作用。通常,当现实世界信号时,DAC 会并入大多数数字系统中。现实世界信号(如压力信号、声波、温度读数或图像)通过模数转换器 (ADC) 转换为数字形式。经过处理后,这些信号使用 DAC 转换回模拟信号。DAC 是驱动音频 - 视频应用、直流、交流或伺服电机控制、射频收发器或各种工业温度控制器等设备的电路的必备条件。刺激神经组织的共同目标位于中枢神经系统和周围神经系统 (PNS) 内。中枢神经系统 CNS 主要关注神经元群的正常运作。对神经元群的刺激是为了探测所述神经元群。刺激还利用神经假体装置为其用户提供感官反馈。临床上,为了缓解帕金森病和癫痫的症状,人们使用中枢神经系统刺激。同样,对于假肢的感觉反馈,周围神经系统 (PNS) 刺激也很有用 [1,20]。在最近的进展中,这种模拟被应用于高血压和炎症性疾病的治疗 [2,20]。现代 VLSI 技术可以实现小型化和完全植入式神经刺激器电路,同时允许设计人员集成大量通道,并允许增加功能。增加的功能使设计人员能够在不影响设备尺寸的情况下实现更高的刺激效果。修订稿于 2020 年 1 月 15 日收到。
总统的科学和技术奖章授予了NSCC指导委员会主席Quek Gim Pew先生,他在塑造新加坡的研究,创新和企业(RIE)生态系统方面做出了杰出的贡献。其中包括开发科学和技术方面的本地能力,尤其是太空技术,量子工程,人工智能和高性能计算,以及倡导与STEM相关的计划,以培养科学家和工程师的下一代。凭借在研发管理和能力开发方面的丰富经验,Quek先生继续为各种国家RIE计划做出贡献。作为一名共识构建者和坚信与强大网络合作的坚信,他帮助跨组织和RIE领域之间的协同作用,以增强这些计划中的可交付成果和成果。Quek先生于2023年1月成为NSCC指导委员会主席,此后一直为满足国家需求的高性能计算提供宝贵的指导,并为新加坡R&D景观的持续增长做出贡献。