在Ha-clabsi的入院之间为20天,而HA-BSI为12天。中央线插入到ha-clabsi之间的中位持续时间为16天。1094,631(57.7%)患者在HA-BBSI诊断时插入了插入HA-BBSI时插入的血管导管(即,IV套管,端口 - A-CATH,外周插入的中心导管或中心线),其中46例(7.3%)患者患有clabsi±2dddddddddddddddddddddddddddddddddddddddddday。来自这些指标的每月汇总数据之间没有显着相关性(Spearman的相关系数= 0.36,p值= 0.1)。引起Ha-Clabsi和Ha-bsi的主要生物是革兰氏阴性细菌(GNB,40%和57.21%),革兰氏阳性细菌(24.71%和22.23%)和Fungi。CLABSI患者的常见GNB是假单胞菌属。和stenotrolophomonas一个友善(8.24%),其次是serratia marcescens和Klebsiella肺炎(5.88%)。HA-BSI患者的频繁GNB是大肠杆菌(15.4%),克雷伯氏菌肺炎(12.68%)和假单胞菌spp。(6.69%)。常见的多药抗性生物是耐万古霉素的肠球菌(10.59%和3.69%)和
在这项研究中,从局部来源分离出的9种芽孢杆菌菌株,通过小麦,5个杆菌,1个假单胞菌和1个stenotrophomonas菌株检查了从局部来源鉴定出的PGPR(促进根瘤菌生长)的特性。它是用无菌小麦种子以二元和三重寿司组合的形式处理的,该组合是由从每种细菌菌株和相等体积的每个细菌菌株中制备的生物接管剂(10 8 COB/mL)形成的。无菌玉米种子被放入盆中,并以二进制,三重和四重奏组合的形式接种生物染料后,以单个菌株和相等的体积混合。试验被设计为三个重复。在受控条件下,小麦和玉米种子的发展尝试分别持续了30和45天。与对照组相比(B. uttilis b.3.p.5 + B.枯草脂蛋白1.19 + B.枯草厂36.5)和(B. uptilis b.3.p.5 + B.单纯b.1.2.k),用于埃及(B.枯草1.19 + B.单纯B.1.2.2.2.k + B. Megaterium 42.3)和(B. Megaterium 42.3 + B.枯草厂36.5 + S. Rhizophila 118.1 + P.氯藻氯藻P-102-B)。决定。关键字:PGPR,协同作用,小麦,玉米,种子开发
摘要:草莓的产生受到了几种非生物和生物胁迫的挑战,例如干旱,土壤盐度和叶thomonas fragariae引起的角叶斑(ALS)疾病。近几十年来,开发含有不同植物促进(PGP)微生物组合的商业产品一直是农业研究的主要重点之一。然而,根据农作物物种,环境条件以及不同菌株或土著植物菌群之间的竞争,它们的结果通常是不稳定的。使用从特定于农作物的微生物群中选择的有益微生物可能有助于克服这一局限性,从而促进了其可持续农业的局限性。筛选了草莓植物的可培养细菌,以便在体外鉴定PGP活性。细菌分离株在最佳和胁迫(X. fragariae感染或盐度)条件下在草莓植物上进行了测试,从而可以选择假单胞菌的假单胞菌菌株的菌株,促嗜性嗜性嗜性嗜性嗜性菌群和农业杆菌在植物上的生产和植物的生产均高于七个效果(均可提高了七个-F),甚至会增加了七个效果(均可提高效果,甚至可以超出七个。 ALS超过50%。通过协调接种测试了PGP分离株之间潜在的协同作用。然而,与M23和M27单晶型处理相比,通过协调接种,植物的生长和果实质量没有得到促进,除了果实的重量和大小。
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
10 男 56 腰椎 2 开放性手术 Modic 改变 病理阴性 嗜麦芽窄食单胞菌 11 女 64 腰椎 3 开放性手术 Modic 改变 病理阴性 N/A 12 女 67 腰椎 2 开放性手术 Modic 改变 病理阴性 N/A 13 男 44 腰椎 0.5 开放性手术 Modic 改变 病理阴性 N/A 14 男 42 腰椎 6 开放性手术 Modic 改变 病理阴性 N/A 15 男 39 腰椎 8 C 臂引导活检 Modic 改变 病理阴性 N/A 16 女 29 腰椎 2 开放性手术 Modic 改变 病理阴性 N/A 17 女 53 腰椎 2 开放性手术 Modic 改变 病理阴性 N/A 18 男 55 腰椎 1 开放性手术 Modic 改变 病理阴性 N/A 19 男59 腰椎 1 开放性手术 Modic 改变 阴性病理 N/A 20 男性 61 腰椎 2 开放性手术 Modic 改变 阴性病理 N/A 21 男性 39 腰椎 0.5 C 臂引导活检 终板骨折 阴性病理 N/A 22 女性 51 腰椎 1 C 臂引导活检 终板骨折 阴性病理 N/A
铅(PB)是一种非必需的重金属,具有更大的毒性水平。由于其普遍,不可生物降解和持续性的性质,它会引起严重的健康和环境问题,需要适当的补救程序。这项研究旨在从印度勒克瑙(Lucknow)的Gomati河水中鉴定出耐铅的细菌菌株。从Gomati河的不同位置收集了五个水样。收集的样品对生化氧的需求,化学氧需求,总溶解固体,pH和硬度进行了生理化学分析。进一步筛选了水样以分离铅抗性细菌。该研究确定了20种耐受铅毒性的分离株,其中选择了两种高度抗性菌株S1C3和S4C7,使用形态学,生化和分子技术,包括16S rRNA测序。这两种菌株被鉴定为促嗜性菌群嗜性菌A和叶尼氏杆菌。树突状菌具有更大的耐铅和铜的耐受性,而麦芽葡萄球菌则表现出优异的生物降解潜力。研究结果表明,这些细菌菌株有可能用于对具有重金属的受污染部位进行生物修复。本研究文章有助于理解微生物多样性以及细菌在重金属污染的生物修复中的潜力。
摘要。土壤盐分介导微生物和土壤过程,如土壤有机碳 (SOC) 循环。然而,土壤盐分如何通过塑造细菌群落多样性和组成来影响 SOC 矿化仍然难以捉摸。因此,沿盐梯度(盐度为 0.25%、0.58%、0.75%、1.00% 和 2.64%)采集土壤样本并培养 90 天,以研究 (i) SOC 矿化(即棉籽粉作为底物引起的土壤启动效应)和 (ii) 负责任的细菌群落,方法是使用高通量测序和 13 C 同位素的天然丰度(以分离棉籽粉衍生的 CO 2 和土壤衍生的 CO 2 )。我们观察到在培养的前28天中出现负向启动效应,而在56天之后转为正向启动效应。早期的负向启动可能是由于优先利用棉籽粕所致。随后的正向启动随着盐度的增加而降低,这可能是由于高盐度土壤中微生物群落的α多样性降低所致。具体而言,沿盐度梯度的土壤pH值和电导率(EC)是调节微生物群落结构从而调节SOC启动的主要变量(通过基于距离的多元分析和路径分析估计)。通过采用双向正交投影到潜在结构(O2PLS),将启动效应与特定的微生物类群联系起来;例如,变形菌门(Luteimonas、Hoeflea 和 Stenotrophomonas)是归因于底物诱导的启动效应的核心微生物属。在这里,我们强调盐度的增加降低了微生物群落的多样性,并转移了优势微生物(放线菌和 Pro-
本文是Gilroy R,Ravi A,Getino M,Pursley I,Horton DL等人的后续作品。peerj 2021; 9:e10941,详细介绍了文化收藏中的登录号,以确保33种新物种的名称符合《国际命名法》的规则,该规则是有效出版文化物种名称所需的原核生物规则。现在建议以下物种名称被认为是有效发表的:卵石杆菌sp。nov。,节肢动物Gallicola sp。nov。NOV。,诺维奇西斯杆菌 NOV。,Brevibacterium Gallinarum sp。 nov。,brevundimonas guildfordensis sp。 nov。,cellulomonas avistercoris sp。 nov。 nov。,comamonas avium sp。 NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,诺维奇西斯杆菌NOV。,Brevibacterium Gallinarum sp。 nov。,brevundimonas guildfordensis sp。 nov。,cellulomonas avistercoris sp。 nov。 nov。,comamonas avium sp。 NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Brevibacterium Gallinarum sp。nov。,brevundimonas guildfordensis sp。nov。,cellulomonas avistercoris sp。nov。nov。,comamonas avium sp。NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Corynebacterium Gallinarum sp。nov。,cytobacillus stercorigallinarum sp。nov。,Escherichia whittamii sp。nov。,kaistella pullorum sp。nov。,luteimonas colneyensis sp。NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,微区公社。11月,gallinarum sp。NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,微分细菌sp。NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。nov。,ochrobactrum gallinarum sp。NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Oerskovia Douganii sp。NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Oerskovia Gallyi sp。11月,Oerskovia Merdavium sp。11月,Oersko-通过Rustica sp。NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Paenibacillus Gallinarum sp。11月,Phocaeicola Gallinarum sp。nov。nov。11月,Serpens Gallinarum sp。nov。,solibacillus粪便sp。nov。11月,Gallician Sporing sp。 11月,sporing Quadrami sp。 nov。,stenothopomomas pennii sp。 nov。和Urbann可以。11月,Gallician Sporing sp。11月,sporing Quadrami sp。 nov。,stenothopomomas pennii sp。 nov。和Urbann可以。11月,sporing Quadrami sp。nov。,stenothopomomas pennii sp。nov。和Urbann可以。
一项全面的研究涵盖了整个尼泊尔17个不同地点的口服患者的153个样本的收集。各种样品包括牙齿牙齿,牙菌斑和牙科微积分,是从牙科诊所,牙科医院和牙科营地中购买的。采用六种不同的培养基,即营养琼脂(NA),Muller Hilton琼脂(MHA),甘露醇盐琼脂(MSA),血液琼脂(BA),脑心脏输液琼脂(BHA)和马铃薯糊精琼脂(PDA),用于潜在的Fungal strains,用于5-7°C,用于潜在的Fungal strains for Fungal strains for Fungal strains。随之而来的细菌菌落被明智地分离出来,其形态和生化特征被仔细检查。研究了细菌细胞的显微镜结构,考虑了形状,大小,颜色,不透明度和纹理。革兰氏阴性染色,并评估每个菌落的生化属性的蛋白酶,果胶酶,纤维酶和脂肪酶。从牙科样品中分离出来的1200个菌落,以形态和生化特征区别的300个不同的菌落被选择以进一步的分类学鉴定。Subsequent sequencing revealed the identification of 60 distinct species within 21 genera of bacterial isolates, including Achromobacter , Bacillus , Chryseobacterium , Citrobacter , Curtobacterium , Enterobacter , Enterococcus , Escherichia , Flavobacterium , Klebsiella , Kocuria , Lyinibacillus , Novosphingobium , Ochrobactrum , Proteus,pseudomonas,sporosarcina,葡萄球菌,stnotrophomonas,serratia和链球菌。这项研究强调了口服样本中各种致病细菌物种的存在。
放牧干扰可改变植物根际微生物群落结构,从而改变反馈机制,促进植物生长或诱导植物防御。然而,人们对这种变化在不同放牧压力下如何发生和变化,以及根部代谢物在改变根际微生物群落组成中的作用知之甚少。本研究研究了不同放牧压力对微生物群落组成的影响,并利用代谢组学方法探索了不同放牧压力改变根际微生物组的机制。放牧改变了微生物群落的组成、功能和共表达网络。在轻度放牧(LG)下,一些腐生真菌,如香菇属、Ramichloridium 属、Ascobolus 属。和 Hyphoderma sp. 显著富集,而在重度放牧 (HG) 下,潜在有益的根际细菌,如 Stenotrophomonas sp.、Microbacterium sp. 和 Lysobacter sp. 显著富集。有益的菌根真菌 Schizothecium sp. 在 LG 和 HG 中均显著富集。此外,所有富集的有益微生物都与根系代谢物呈正相关,包括氨基酸 (AA)、短链有机酸 (SCOA) 和生物碱。这表明这些显著富集的根际微生物变化可能是由这些差异性根系代谢物引起的。在放牧压力下,推测根系代谢物,尤其是氨基酸如L-组氨酸,可能调控特定的腐生真菌参与物质转化和能量循环,促进植物生长。此外,为了缓解高放牧压力,提高植物的防御能力,推测根系在放牧干扰下会主动调节这些根系代谢物如氨基酸、中链氨基酸和生物碱的合成,然后分泌它们来促进一些特定的促进植物生长的根际细菌和真菌的生长。总之,禾本科植物可以通过改变根系代谢物的组成来调控有益微生物,在典型的草原生态系统中,不同的放牧压力下,其响应策略也不同。