水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。
多药的生物(MDROS)是微生物,主要是细菌,它们对一种或多种类类的抗菌剂和某些抗生素具有抗性。因此,不再使用抗生素来杀死这些微生物。mdros,包括但不限于甲基甲基蛋白的金黄色葡萄球菌(MRSA),抗性霉素的肠球菌(VRE),产生甲状腺素酶的肠杆菌科和产生革兰氏阴性菌属的甲状腺素酶,以及产生革兰氏阴性菌的细菌。它们还包括大肠杆菌和克雷伯菌肺炎,鲍曼尼杆菌杆菌,以及诸如stenotrophomonas mattophilia的生物(Siegel等,2006)。根据世界卫生组织(WHO)的说法,MDRO是日益严重的威胁,在全球范围内构成了重要的公共卫生风险(Chan,2017年)。多药耐药性细菌病原体是最终的威胁,这需要应对细菌感染的新政策必要。美国疾病控制与预防中心报告[CDCP](2013)(Chambers and Deleo,2009年),美国抗铜绿假单胞菌和金黄色葡萄球菌感染了200万个人。在治疗环境中,抗菌耐药性是指微生物防止药物对其作用的能力。如果对此一无所有,到2050年,这将是死亡率的主要原因。细菌具有一种自适应机制,可帮助它们在充满挑战的情况下发展和忍受。抗生素就是一种压力源。已经发现,在抗生素污染的环境中,许多细菌会膨胀。细菌中耐药性决定因素的存在是生物体生存抗生素应激能力的主要原因。细菌既获得抗生素应激的固有特性,又具有内在特性。由于细菌自然合成了抗生素和抗生素耐药性酶,因此合成和耐药机制将共同进化是有道理的。在土壤中,产生抗生素的微生物与其他生物共存,抗生素的耐药性由于进化压力的增加而发展(Iskandar等,2022)。产生细菌的抗生素中存在的耐药性决定因素,这些抗生素具有临床分离株中直系同源物的概念。抗菌抗性已成为主要的威胁。当细菌暴露于环境中的抗生素时,在细菌中会形成选择性压力,从而导致基因的进化抗生素耐药性。
Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>
22 a. 已确认血流感染继发于以下来源之一:i. 泌尿道感染 ii. 腹腔内或胆道感染 iii. 导管相关血流感染 iv. 肺炎(无结构性肺病、脓胸/脓肿、囊性纤维化)v. 皮肤和软组织感染 b. 感染源控制(即移除任何受感染的硬件、导管或设备,几乎完全排出受感染的积液,以及通过影像学检查确保 [根据需要] 没有残留或转移性感染部位)c. 无免疫功能低下和机会性感染风险的患者(例如,近期接受实体器官移植;GN-BSI 治疗过程中预计会出现长时间中性粒细胞减少症,且 ANC <500 细胞/mL;近期 CD4 细胞计数 <200 细胞/mL;长期接受皮质类固醇和/或免疫调节剂治疗);可根据具体情况考虑选择免疫功能低下的患者,例如正在接受稳定的免疫调节治疗的患者。d。有效抗生素治疗后 72 小时内临床改善——至少包括退热和血流动力学稳定 参考文献: 1. Tamma 等人,JAMA Int'l Med 2019 PMID:30667477 2. Yahav 等人,CID 2018 PMID:30535100 3. Fabre 等人,CID 2019 PMID:30882137 4. Mercuro 等人,IJAA 2018 PMID:29284155 5. Eliakim-Raz 等人,JAC 2013 PMID:23696620 6. Kutob 等人,IJAA 2016 PMID:27590704 7. Canzoneri 等人,CID 2017 PMID 29020307 8. Chotiprasitsakul 等人,CID 2019 PMID:29190320 9. Tansarli 等人,AAC 2019 PMID:30803971 10. Wu 等人,BMC 2018 PMID 29902981 11. MERINO 试验 JAMA 2018 PMID:30208454 12. Wiggers 等人,BMC ID 2016 PMID:27296858 13. Punjabi C 等人,OFID 2019 PMID:31412127 14. Wang AAC 2014 PMID:24145530 15. Ko CMI 2019 DOI:10.1016/j.cmi.2018.11.008 16. Cho BMCID 2015 PMID:25887489 17. Lai 等人,2017 年 ID 周 18. Kohlmann 等人,J Antimicrob Chemother。 2018 年 6 月 1 日;73(6):1530-1536。 doi:10.1093/jac/dky084。 19. Tamma 等人,CID 2019;69(8):1446–55 DOI:10.1093/cid/ciz173 20. Tamma PD、Aitken SL、Bonomo RA、Mathers AJ、van Duin D、Clancy CJ。美国传染病学会关于治疗产 AmpC β-内酰胺酶肠杆菌、耐碳青霉烯类鲍曼不动杆菌和嗜麦芽窄食单胞菌感染的指导。临床传染病。2021 年 12 月 5 日:ciab1013。doi:10.1093/cid/ciab1013。提前电子出版。 PMID:34864936。[访问日期:2022 年 3 月 14 日] 21. Mack 等人 2022 PMID:35758168 22. Heil 等人 2021 PMID:34738022 作者:Lina Meng,PharmD、Emily Mui,PharmD、Stan Deresinski,MD、Samaneh Pourali,PharmD、Cassie Kwok,PharmD、Noah Fang,PharmD、Alycia Hatashima,PharmD,2019 年 7 月 19 日。
参考文献: 1. Lexicomp Online。访问日期:2017 年 4 月 9 日。http://online.lexi.com 2. MICROMEDEX®。访问日期:2017 年 4 月 9 日。http://www.micromedexsolutions.com.laneproxy.stanford.edu/micromedex2/librarian 3. Heintz BH、Matzke GR、Dager WE。接受持续性肾脏替代疗法或间歇性血液透析的重症成人患者的抗菌剂量概念和建议。Pharmacother J Hum Pharmacol Drug Ther。2009;29。doi:10.1592/phco.29.5.562 4. Trotman RL、Williamson JC、Shoemaker DM、Salzer WL。接受持续性肾脏替代疗法的重症成人患者的抗生素剂量。Clin Infect Dis。 2005;41(8):1159-1166。doi:10.1086/444500 5. Aronoff G、Bennett W、Berns J 等人。肾衰竭中的药物处方。第 5 版。美国内科医师学会;2007 年。 6. Turner RB、Cumpston A、Sweet M 等人。肥胖患者阿昔洛韦药代动力学的前瞻性对照研究。抗微生物药物化疗。2016;60。doi:10.1128/aac.02010-15 7. Tomblyn M、Chiller T、Einsele H 等人。造血细胞移植接受者感染并发症预防指南:全球视角。Biol Blood Marrow Transplant。 2009;15(10):1143-1238。doi:10.1016/j.bbmt.2009.06.019 8. Roger C、Wallis SC、Muller L 等人。肾脏替代方式对接受持续性肾脏替代治疗的危重患者阿米卡星群体药代动力学的影响。抗微生物剂化疗。2016;60。doi:10.1128/aac.00828-16 9. Taccone FS、Backer D de、Laterre PF 等人。接受持续性肾脏替代治疗的脓毒症患者负荷剂量阿米卡星的药代动力学。国际抗微生物剂杂志。2011;37。 doi:10.1016/j.ijantimicag.2011.01.026 10. Mora Lopez L、Serra Pla S、Serra-Aracil X、Ballesteros E、Navarro S。改良 Neff 分类法在无并发症憩室炎患者中的应用。结直肠疾病。2013;15(11):1442-1447。doi:10.1111/codi.12449 11. Biondo S、Golda T、Kreisler E 等。无并发症憩室炎的门诊与住院治疗:一项前瞻性、多中心随机临床试验(DIVER 试验)。外科年鉴。2014;259(1):38-44。 doi:10.1097/SLA.0b013e3182965a11 12. Mora-López L、Ruiz-Edo N、Estrada-Ferrer O 等人。非抗生素门诊治疗轻度急性憩室炎的疗效和安全性(DINAMO 研究):一项多中心、随机、开放标签、非劣效性试验。Ann Surg。2021;274(5):e435。doi:10.1097/SLA.0000000000005031 13. Tamma PD、Aitken SL、Bonomo RA、Mathers AJ、van Duin D、Clancy CJ。美国传染病学会关于治疗产 AmpC β-内酰胺酶肠杆菌、耐碳青霉烯类鲍曼不动杆菌和嗜麦芽窄食单胞菌感染的指导。临床传染病学杂志。2022;74(12):2089-2114。doi:10.1093/cid/ciab1013 14. Gerig JS、Bolton ND、Swabb EA、Scheld WM、Bolton WK。血液透析和腹膜透析对氨曲南药代动力学的影响。Kidney Int 。1984;26。doi:10.1038/ki.1984.174 15. Gustot T、ter Heine R、Brauns E、Cotton F、Jacobs F、Brüggemann RJ。对于 Child–Pugh B 或 C 级肝硬化患者,无需调整卡泊芬净剂量。J Antimicrob Chemother 。2018;73(9):2493-2496。doi:10.1093/jac/dky189 16. Roger C、Wallis SC、Muller L 等。接受持续性静脉-静脉血液滤过或血液透析滤过的危重患者中卡泊芬净的群体药代动力学。Clin Pharmacokinet 。2017;56(9):1057-1068。 doi:10.1007/s40262-016-0495-z 17. Pappas PG、Kauffman CA、Andes DR 等人。念珠菌病管理临床实践指南:美国传染病学会 2016 年更新。 Clin Infect Dis Off Public Infect Dis Soc Am。 2016;62(4):e1-50。 doi:10.1093/cid/civ933 18. Stryjewski ME、Szczech LA、Benjamin DK 等人。使用万古霉素或第一代头孢菌素治疗患有甲氧西林敏感金黄色葡萄球菌菌血症的血液透析依赖患者。临床感染病。 2007;44。 doi:10.1086/510386 19. Wong G, Briscoe S, McWhinney B 等人。重症患者 β-内酰胺类抗生素治疗药物监测:直接测量未结合药物浓度以实现适当的药物暴露。J Antimicrob Chemother 。2018;73(11):3087-3094。doi:10.1093/jac/dky314 20. Roberts JA, Udy AA, Jarrett P 等人。创伤后重症患者头孢唑林血浆和靶部位皮下组织群体药代动力学和给药模拟。J Antimicrob Chemother 。2015;70(5):1495-1502。 doi:10.1093/jac/dku564 21. Crandon JL、Bulik CC、Kuti JL、Nicolau DP。头孢吡肟在感染铜绿假单胞菌患者中的临床药效学。抗菌药物化疗。2010;54。doi:10.1128/AAC.01183-09 22. Bauer KA、West JE、O'Brien JM、Goff DA。延长输注头孢吡肟可降低感染铜绿假单胞菌患者的死亡率。抗菌药物化疗。2013;57。doi:10.1128/AAC.02365-12 23. Hoff BM、Maker JH、Dager WE、Heintz BH。接受间歇性血液透析、长期间歇性肾脏替代疗法和持续性肾脏替代疗法的重症成人患者的抗生素剂量:最新进展。药物治疗年鉴。2020;54(1):43-55。doi:10.1177/1060028019865873 24. Vidaillac C、Leonard SN、Rybak MJ。头孢洛林在中空纤维模型中对耐甲氧西林金黄色葡萄球菌和异质性万古霉素中间金黄色葡萄球菌的体外活性。抗菌药物化学治疗。2009;53(11):4712-4717。 doi:10.1128/AAC.00636-09 25. Loo AS, Neely M, Anderson EJ, Ghossein C, McLaughlin MM, Scheetz MH. 高通量血液透析中各种头孢他啶给药方案的药效动力学目标实现情况。抗菌药物化疗。2013;57(12):5854-5859. doi:10.1128/AAC.00474-13 26. Wenzler E, Bunnell KL, Bleasdale SC, Benken S, Danziger LH, Rodvold KA.接受持续性静脉静脉血液透析滤过的危重患者头孢他啶-阿维巴坦的药代动力学和透析清除率。抗微生物剂化疗。2017;61(7)。doi:10.1128/AAC.00464-17 27. Soukup P、Faust AC、Edpuganti V、Putnam WC、McKinnell JA。接受持续性静脉静脉血液透析滤过的治疗铜绿假单胞菌肺炎的危重患者稳态头孢他啶-阿维巴坦血清浓度和给药建议。Pharmacother J Hum Pharmacol Drug Ther。2019;39(12):1216-1222。 doi:10.1002/phar.2338 28. Pistolesi V、Morabito S、Di Mario F、Regolisti G、Cantarelli C、Fiaccadori E. 接受肾脏替代治疗的危重患者抗菌药物剂量理解指南。抗菌药物化学治疗。2019;63(8)。doi:10.1128/AAC.00583-19 29. Li L、Li X、Xia Y 等人。持续肾脏替代治疗期间抗菌药物剂量优化建议。Front Pharmacol。2020;11。doi:10.3389/fphar.2020.00786 30. Bremmer DN、Nicolau DP、Burcham P、Chunduri A、Shidham G、Bauer KA。接受连续性肾脏替代治疗的重症成人患者的头孢洛扎/他唑巴坦药代动力学。药物治疗学。2016;36(5):e30-e33。doi:10.1002/phar.1744 31. Oliver WD、Heil EL、Gonzales JP 等人。接受连续性静脉-静脉血液透析滤过的重症患者的头孢洛扎-他唑巴坦药代动力学。抗微生物剂化疗。2016;60。doi:10.1128/aac.02608-15 32. Aguilar G、Ferriols R、Martínez-Castro S 等人。在连续性静脉-静脉血液透析滤过期间优化重症患者的头孢洛扎-他唑巴坦剂量。重症监护。 2019;23。doi:10.1186/s13054-019-2434-5 33. Tamma PD、Aitken SL、Bonomo RA、Mathers AJ、van Duin D、Clancy CJ。美国传染病协会 2022 年产超广谱 β-内酰胺酶肠杆菌科细菌 (ESBL-E)、耐碳青霉烯类肠杆菌科细菌 (CRE) 和难治性耐药铜绿假单胞菌 (DTR-P. aeruginosa) 治疗指南。Clin Infect Dis Off Publ Infect Dis Soc Am。2022;75(2):187-212。doi:10.1093/cid/ciac268 34. Laville M、Mercatello A、Freney J 等人。头孢曲松在血液透析中的药代动力学。Pathol Biol(巴黎)。1987;35(5 Pt 2):719-723。35. Stevens DL、Bisno AL、Chambers HF 等。皮肤和软组织感染诊断和管理实践指南:美国传染病协会 2014 年更新。临床感染性疾病。2014;59。doi:10.1093/cid/ciu296 36. Roger C、Wallis SC、Louart B 等。等剂量持续性静脉-静脉血液滤过和血液透析滤过对危重患者环丙沙星群体药代动力学的影响比较。抗微生物化疗杂志。2016;71(6):1643-1650。 doi:10.1093/jac/dkw043 37. Marbury T、Dowell JA、Seltzer E、Buckwalter M。达巴万星在肾或肝功能不全患者中的药代动力学。临床药理学杂志。 2009;49(4):465-476。 doi:10.1177/0091270008330162 38. Dvorchik BH,Damphousse D. 达托霉素在中度肥胖、病态肥胖和匹配的非肥胖受试者中的药代动力学。临床药理学杂志。2005;45(1):48-56。doi:10.1177/0091270004269562 39. Pai MP、Norenberg JP、Anderson T 等人。病态肥胖对达托霉素单剂量药代动力学的影响。抗微生物剂化疗。2007;51(8):2741-2747。doi:10.1128/AAC.00059-07 40. Haselden M、Leach M、Bohm N. 接受每周三次间歇性血液透析的患者的达托霉素给药策略。药物治疗年鉴。 2013;47(10):1342-1347。doi:10.1177/1060028013503110 41. Patel N、Cardone K、Grabe DW 等。使用药代动力学和药效学原理确定接受标准化每周三次血液透析的患者达托霉素的最佳给药方式。抗微生物剂化疗。2011;55(4):1677-1683。doi:10.1128/AAC.01224-10 42. Falcone M、Russo A、Cassetta MI 等。接受连续性肾脏替代治疗的危重患者血清达托霉素水平。意大利佛罗伦萨化疗杂志。2012;24(5):253-256。 doi:10.1179/1973947812Y.0000000033 43. Preiswerk B、Rudiger A、Fehr J、Corti N。接受持续性肾脏替代治疗的ICU患者中达托霉素每日给药的经验。感染。2013;41(2):553-557。doi:10.1007/s15010-012-0300-3 44. Xu X、Khadzhynov D、Peters H 等。接受持续性肾脏替代治疗的成年患者中达托霉素的群体药代动力学。英国临床药理学杂志。2017;83(3):498-509。 doi:10.1111/bcp.13131 45. Diolez J、Venisse N、Belmouaz S、Bauwens MA、Bridoux F、Beraud G。高剂量达托霉素对感染医疗器械的血液透析患者的初步药代动力学研究。Am J Kidney Dis Off J Natl Kidney Found。2017;70(5):732-734。doi:10.1053/j.ajkd.2017.05.011 46. Geerlings CJC、de Man P、Rietveld AP、Touw DJ、Cohen Tervaert JW。对于慢性血液透析患者来说,每周三次厄他培南的实用给药方案是什么?临床肾脏病学。2013;80(4):312。 doi:10.5414/cn108071 47. Hsaiky LM, Salinitri FD, Wong J 等。间歇性血液透析患者厄他培南的药代动力学和最佳剂量研究。肾脏病学与移植杂志。2019;34(10):1766-1772。doi:10.1093/ndt/gfy166 48. Ueng YF, Wang HJ, Wu SC, Ng YY。每周三次厄他培南治疗方案对血液透析患者实用。抗微生物剂化疗。2019;63(12)。doi:10.1128/AAC.01427-19 49. 耐药结核病:临床医生生存指南,第 3 版 | Curry 国际结核病中心。访问日期:2017 年 4 月 10 日。http://www.currytbcenter.ucsf.edu/products/cover-pages/drug-resistant- tuberculosis-survival-guide-clinicians-3rd-edition 50. Nahid P、Dorman SE、Alipanah N 等。美国胸科学会/疾病控制与预防中心/美国传染病学会官方临床实践指南:药物敏感结核病的治疗。Clin Infect Dis Off Publ Infect Dis Soc Am。2016;63(7):e147-195。doi:10.1093/cid/ciw376 51. Muilwijk EW、Lange DW de、Schouten JA 等人。重症患者氟康唑剂量不理想:是时候重新考虑剂量了。抗微生物药物化疗。2020;64(10)。doi:10.1128/AAC.00984-20 52. Aweeka FT、Jacobson MA、Martin-Munley S 等人。肾脏疾病和血液透析对膦甲酸药代动力学和给药建议的影响。J Acquir Immune Defic Syndr Hum Retrovirology Off Publ Int Retrovirology Assoc。1999;20(4):350-357。53. Jayasekara D、Aweeka FT、Rodriguez R、Kalayjian RC、Humphreys MH、Gambertoglio JG。肾功能不全的 HIV 患者的抗病毒治疗。 J Acquir Immune Defic Syndr 1999 . 1999;21(5):384-395。 54. MacGregor RR、Graziani AL、Weiss R、Grunwald JE、Gambertoglio JG。膦甲酸疗法成功治疗接受血液透析的艾滋病患者巨细胞病毒性视网膜炎:经验性用药和血浆水平监测的原理。J Infect Dis . 1991;164(4):785-787。 55. Nicolau DP、Freeman CD、Belliveau PP、Nightingale CH、Ross JW、Quintiliani R。每日一次氨基糖苷类药物治疗 2,184 名成年患者的经验。抗微生物药物化疗。1995;39(3):650-655。 56. Kuti JL, Dandekar PK, Nightingale CH, Nicolau DP. 使用蒙特卡罗模拟设计美罗培南的优化药效学给药策略。J Clin Pharmacol。2003;43(10):1116-1123。doi:10.1177/0091270003257225 57. Robson R, Buttimore A, Lynn K, Brewster M, Ward P. 奥司他韦混悬液在血液透析和持续性非卧床腹膜透析患者中的药代动力学和耐受性。Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc。2006;21(9):2556-2562。 doi:10.1093/ndt/gfl267 58. Lodise TP, Lomaestro B, Drusano GL。哌拉西林-他唑巴坦治疗铜绿假单胞菌感染:延长输注给药策略的临床意义。Clin Infect Dis Off Publ Infect Dis Soc Am。2007;44(3):357-363。doi:10.1086/510590 59. Patel N, Scheetz MH, Drusano GL, Lodise TP。确定住院患者传统和延长输注哌拉西林-他唑巴坦给药方案的最佳肾脏剂量调整。抗微生物药物化疗。2010;54(1):460-465。 doi:10.1128/AAC.00296-09 60. Sandri AM、Landersdorfer CB、Jacob J 等。重症患者静脉注射多粘菌素 B 的群体药代动力学:对给药方案选择的影响。Clin Infect Dis Off Publ Infect Dis Soc Am。2013;57(4):524-531。doi:10.1093/cid/cit334 61. Tsuji BT、Pogue JM、Zavascki AP 等。多粘菌素最佳使用国际共识指南:由美国临床药学学院 (ACCP)、欧洲临床微生物学和传染病学会 (ESCMID)、美国传染病学会 (IDSA)、国际抗感染药理学学会 (ISAP)、重症监护医学学会 (SCCM) 和传染病药剂师学会 (SIDP) 认可。Pharmacother J Hum Pharmacol Drug Ther。2019;39(1):10-39。doi:10.1002/phar.2209 62。Baddour LM、Wilson WR、Bayer AS 等。成人感染性心内膜炎:诊断、抗菌治疗和并发症处理:美国心脏协会面向医疗专业人士的科学声明。《循环》。2015;132(15):1435-1486。doi:10.1161/CIR.0000000000000296 63. Osmon DR、Berbari EF、Berendt AR 等。假体关节感染的诊断和处理:美国传染病协会临床实践指南。《临床感染性疾病 Off Publ Infect Dis Soc Am》。2013;56(1):e1-e25。doi:10.1093/cid/cis803
nlm提供了对科学文献的访问,而无需暗示与内容的认可或一致。分类法涉及根据特征对微生物进行分类,细菌通过革兰氏染色反应分为两个主要组,并表现出各种形状和大小。在临床实践中,细菌是通过形态学,氧的需求和生化测试对细菌进行分类的。基因探针和基于PCR的技术等诊断测试系统检测特定细菌。细菌物种通常根据基因重组频率表现出不同的种群结构。键入分离株对于流行病学研究和监视至关重要。微生物可以分为七个大型生物群:藻类,原生动物,粘液霉菌,真菌,细菌,古细菌和病毒。藻类,原生动物,粘液霉菌和真菌是真核微生物,具有类似于动植物的细胞结构。细菌,包括支原体,立克群和衣原体组,具有原核组织。古细菌是一群独特的原核生物,与其他生物没有密切的祖先关系。只有细菌和病毒在医学或兽医上被认为是重要的。病毒是具有简单结构和不同繁殖模式的最小传染剂。病毒,无蛋白质的RNA片段,引起植物的疾病,而prion是动物和人类致命神经退行性疾病的病因。传染性同工型中发生构成变化(第60章)。系统学也称为系统发育学。分类法包括三个组成部分:分类,命名和识别。分类以有序的方式群体群体,而命名法则涉及命名这些生物,要求国际协议以持续使用。命名法的更改可能会引起混乱,并受到国际商定的规则。在临床实践中,微生物学家主要专注于根据商定的分类系统识别分离株。这些组成部分以及分类法构成了与进化,遗传学和物种有关的系统学的总体学科。原生动物,真菌和蠕虫是根据卡尔·冯·林纳(Carl vonLinné)开创性工作后的标准规则分类和命名的。大类(阶级,秩序,家庭)进一步分为由拉丁二项式指定的单个物种。细菌表现出比所有其他细胞寿命的多样性更大,这使刚性分类具有挑战性。识别主要是通过基于密钥的系统来实现的,该系统基于生化性能测试系统的生长或活动来组织细菌性状。有些测试明确鉴定了属或物种,例如葡萄球菌属的过氧化氢酶产生。和细胞色素c由铜绿假单胞菌C。其他特征可能是单个物种独有的,将它们与具有相似生化谱的人区分开来。某些细菌在实验室中不生长(麻风细菌,treponemes),需要遗传学方法鉴定。如图它们可能构成一个属。随着遗传分析技术变得越来越容易获得,它们和其他快速分析方法正在取代传统的生化方法以识别。细菌分类中使用的分类等级包括王国(原核),分区(Gracilicutes),阶级(Betaproteobacteria),订单(Burkholderiales),家庭(Burkholderiaceae),属(Burkholderia)(Burkholderia)和物种(Burkholderia cepacacia)。通过DNA同源性分析将一些属(例如动杆菌)细分为基因组物种。细菌和病毒的分类构成了挑战,这是由于表型测试在区分某些基因组物种时的局限性。当前方法识别物种复合物,这些物种复合物使用多重分类学方法分为基因组群。例如,头囊菌络合物包括从植物病原体到人类病原体的各种生物。尽管没有普遍接受的分类系统,但Bergey的手册被广泛用作权威来源。国际系统细菌学委员会控制细菌命名法,并在《国际系统和进化微生物学杂志》中发布批准的细菌名称清单。病毒由国际病毒分类学委员会(ICTV)归类,并在病毒学档案中发表。在细菌分类中,主要组以基本特征(例如细胞形状,革兰氏染色反应和孢子形成)区分。属和物种通常通过发酵反应,营养需求和致病性等性质进行区分。不同字符的相对重要性通常是任意的,而Adansonian系统则使用考虑广泛字符的统计系数来确定菌株之间的关系程度。此方法可用于分类共享主要字符的较大分组中的菌株。通过评分多个表型特征,可以估计相似性或匹配系数,这些系数可以在计算机上计算以确定生物体之间相似性的程度。3.1,可以使用相似性矩阵或树状图来构建层次分类树。这种方法允许根据相似性水平(用虚线x和y表示)将生物体分离为属和物种。DNA中鸟嘌呤 - 胞嘧啶(G-C)碱基对之间的氢键强度大于腺嘌呤 - 胸腺胺(A-T)碱基对之间的强度,从而影响DNA熔化的温度。DNA序列以确定G+C含量,该含量在细菌属之间差异很大,但在物种中仍然相对一致。另一种分类方法涉及基于其DNA碱基序列的同源性进行分组。此方法利用了在受控冷却过程中的重新形态,并在互补区域之间产生混合配对。可以通过信使RNA(mRNA)结合研究获得有关相关性的遗传证据。尽管具有不同G+C比的生物不太可能显示出明显的DNA同源性,但具有相似或相同的G+C比的生物可能不一定具有同源性。系统发育相关性。已经开发了一种实时PCR方法来估计G+C含量。核糖体RNA(rRNA)的结构似乎在进化过程中是保守的,反映了系统发育关系。核苷酸测序相对简单,并导致了许多在线医学上重要的细菌物种的DNA序列的可用性。注意:我应用了“添加拼写错误(SE)”方法,其中有10%的概率引入错误。如果您要我以不同的方式重塑它,请让我知道!在此处给定文章的分枝杆菌物种鉴定对于理解其系统发育关系至关重要。尽管rDNA序列中的高相似性(> 97%),但可以使用Microseq(Applied Biosystems)等商业系统来区分不同的物种。但是,核糖体基因可能无法提供足够的变化来区分紧密相关的物种。替代候选基因(例如RECA)已被探索,并且似乎有望用于系统发育分析。在系统发育研究中也使用了其他家政基因,包括RPOB,GROEL和GYRB。这些基因定义了与RRNA基因观察到的基因一致的进化树。分类法的主要目标是促进在临床和公共卫生环境中的个人和团体的有效管理。然而,由于基因组序列数据揭示了微生物之间的相互关系,因此对与基本理解保持一致性是必要的。表3.1根据共享特征概述了简化的分类方案。门A(属)是正确的。这些群体已与最近确定的系统发育命名法对服。可以通过补充测试,有时在物种水平上进一步识别生物。形态标准足以鉴定原生动物,蠕虫和真菌。The classification of cellular micro-organisms is as follows: Eukaryotes: Protozoa - Sporozoa Plasmodium, Isospora, Toxoplasma, Cryptosporidium Flagellates Giardia, Trichomonas, Trypanosoma, Leishmania Amoebae Entamoeba, Naegleria, Acanthamoeba Other: Babesia, Balantidium Fungi: Mould-like Epidermophyton, Trichophyton, Microsporum, Aspergillus Yeast-like Candida Dimorphic Histoplasma, Blastomyces, Coccidioides True yeast: Cryptococcus Prokaryotes: Bacteria: Actinobacteria (High G+C Gram positives) - Actinomyces, Streptomyces, Corynebacterium, Nocardia,分枝杆菌,微球菌(低g-c gram阳性) - 李斯特菌,芽孢杆菌,梭状芽孢杆菌*,乳酸杆菌*,Eubacterium*革兰氏阳性杆菌,杆菌,芽孢杆菌,芽孢杆菌* Enterococcus Gram-negative cocci: Veillonella*, Mycoplasma Proteobacteria (a very large group with 5 sub-divisions) - Neisseria, Moraxella Gram-negative bacilli: Enterobacteria – Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Yersinia Pseudomonads – Pseudomonas, Burkholderia, Stenotrophomonas Haemophilus, Bordetella, Brucella, Pasteurella Rickettsia, Coxiella Gram-negative curved and spiral bacilli: Vibrio, Spirillum, Campylobacter, Helicobacter Bacteroidetes - Bacteroides*, Prevotella* Borrelia, Treponema, Brachyspira, Leptospira衣原体衣原体这些单细胞生物是非斑型生物的,具有独特的核和细胞质。它们的大小从直径2-100 µm变化,其表面膜的复杂性和刚度有所不同。有些物种在内部捕获食物颗粒,而另一些物种则以细菌为食。原生动物被认为是最低的动物生命形式,它通过二元裂变或多重裂变无性繁殖。某些鞭毛原生动物与光合藻类密切相关。最重要的医学原生动物组包括Sporozoa,Amoebae和鞭毛。这些生物具有相对刚性的细胞壁,可能是腐生的或寄生的。霉菌随着分支丝的生长而生长,称为菌丝,形成了称为菌丝体的网状作品。通过形成从营养或空中菌丝体发展的性和无性孢子来繁殖。酵母是卵形细胞,通过萌芽并形成性孢子无性繁殖。二态真菌在人造培养中产生营养菌丝体,但在感染病变中类似酵母。主要的细菌组通过微观观察到其形态和染色反应来区分。革兰氏阴性程序将细菌分为两个伟大的分区:革兰氏阳性和革兰氏阴性细菌。然而,较旧的分类系统与较新的基于DNA序列的系统发育分类之间的关系是复杂的且仍在发展的。随着细菌组之间的系统发育关系开始解体,出现异常。文本描述了根据其形态学特征和染色反应对细菌和病毒进行分类的各种组。尽管如此,在临床实验室中采用的实际鉴定方案很大程度上取决于细菌的形状革兰氏阳性还是阴性,杆菌或球菌的形状,以及它们在有氧或厌氧上生长的能力。医学上有意义的细菌的主要系统发育组包括静脉细菌,其革兰氏阳性具有较高的G+C含量,具有丝状生长和菌丝体的产生; Firmicutes,一组低的G+C革兰氏阳性细菌,其中包括细菌,球菌和孢子形成器;蛋白质细菌,一大群革兰氏阴性细菌;细菌植物,革兰氏阴性厌食症;螺旋体,其特征是带有内部鞭毛的螺旋形细胞;衣原体,严格的细胞内寄生虫产生抗生素并具有非常重要的病原体。其他值得注意的组包括放线菌,链霉菌,分枝杆菌,诺卡氏菌,corynebacterium,链球菌,葡萄球菌,分枝杆菌,尿不质质,叶绿体,veillonella,veillonella,veillonella,gram阳性孢子形成的孢子形成杆菌和近亲,可能会变成gram- cortridium-new cortridiul cortridur cortriver cortridge cortridge cortridg corlam-infram-negam-inform-Gram-ne Gram-ne Gramne。例如,梭状芽胞杆菌的末端孢子具有独特的球形形状。革兰氏阳性的非孢子芽孢杆菌,包括甲ip骨和乳杆菌,倾向于在链或细丝中生长。相反,一些细菌具有使运动能力的鞭毛,例如李斯特菌。细菌可以根据其细胞壁组成,包括α-肾上腺细菌(包括人力赛组和布鲁氏菌),以及贝贝氏菌,包括静脉和伯克霍尔德里亚。尽管具有优势,但核酸测定并非没有局限性。此外,gamaproteobacteria包括大肠杆菌等肠杆菌,以及假单胞菌和军团菌。一些细菌的独特特性(例如弯曲的颤音,包括弧形霍乱)是值得注意的。divaproteobacteria群体在医学上并不显着,而Epsilonproteobacteria包括螺旋杆菌和弯曲杆菌,它们表现出螺旋形状。革兰氏阴性的非腐蚀性厌氧菌(如杆菌和prevotella)以其细长的柔性螺旋而区别。病毒,重点是它们对宿主细胞复制的依赖。某些病毒可能会包裹在脂蛋白中,而另一些病毒缺乏该外层。提出了一个分类系统,根据其遗传物质和衣壳结构对病毒进行分组。引起人类疾病的主要病毒类型包括RNA病毒,例如流感,paramyxoviruse和Flaviviviruses,以及picornaviruses和paciviruses。许多类型的病毒,包括艾滋病毒,HTLV和疱疹病毒会导致人类疾病。DNA病毒,例如痘病毒,轮状病毒和腺病毒,也感染了人。微生物学家在识别细菌时由于精确识别所需的耗时过程而面临挑战。通常,它们依赖于显微镜和培养物等简单方法,可以通过其他测试进行推定识别来支持。但是,这些方法通常至少需要24小时,因此在开始识别之前必须获得单个分离株的纯培养。与文化方法不同,非文化检测技术(例如抗原或基于核酸的检测)没有需要纯培养的缺点,但可能具有特异性的局限性。形态和染色反应可以作为将未知物种置于其适当的生物群中的初步标准。诸如革兰氏阴性,深色地面照明和阴性染色之类的技术可用于观察细菌形态,运动性和胶囊形成。在某些情况下,病理标本中某些生物体的微观特征可能足以进行假定的鉴定,例如痰液中的结节芽孢杆菌或渗出液中的T. pallidum T. pallidum。但是,许多细菌具有相似的形态特征,需要进一步测试以区分它们。固体培养基上殖民增长的出现还可以提供特征信息,包括菌落大小,形状,高程和透明度。微生物生长和特征的变化,包括透明度,不透明和颜色,可能会显着影响结果。生长所需的条件范围特定于某些生物,有些需要氧气,其他厌氧环境,而另一些则对二氧化碳水平或pH值敏感。为了区分相似的物种,可以采用评估代谢差异的测试,例如产生特定碳水化合物的酸性和气态终产物的能力。但是,现在许多实验室都使用了结合简单性和准确性的市售微磨合。此过程导致可见细菌生长的抑制作用。Some common tests used in identification include: - Production of indole or hydrogen sulphide - Presence of oxidase, catalase, urease, gelatinase, or lecithinase enzyme activities - Utilization of various carbon sources Traditionally, these tests have been performed individually according to standard guidelines.套件也可用于特定的生物组,例如肠杆菌和厌氧菌。在某些情况下,可以使用更先进的程序来分析代谢产物或全细胞脂肪酸。A fully automated system using high-resolution gas chromatography and pattern recognition software is widely used, allowing for the rapid identification of various bacterial species.Mass spectrometry also holds promise for rapid identification through matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry.由于细菌的多样性和复杂性,对细菌的检测和鉴定可能具有挑战性。Many organisms may not grow in culture, or they may require specialized nutrients, making traditional methods time-consuming and labor-intensive.然而,核酸技术的进步彻底改变了该领域,提供了更灵敏和快速的检测方法。Commercially available systems, including PCR, transcription-mediated amplification, and hybridization with specific probes, can identify a wide range of bacterial species with high accuracy.These technologies enable the detection of multiple species simultaneously, making them ideal for epidemiological investigations and antimicrobial susceptibility testing.此方法允许进行定量和形态评估。污染,操作员技能,底漆设计以及标本中抑制性化合物的存在都会影响结果。对这些结果的解释需要仔细考虑生物体的自然栖息地和共生主义的潜力。The development of new technologies, such as peptide nucleic acid (PNA) assays, holds promise for even more rapid and sensitive detection methods.These techniques use PNA molecules with DNA binding capacity to detect and identify bacterial species on microscope slides, and can be amplified using PCR to accelerate testing times.也已经开发出高密度寡核苷酸阵列,从而可以同时分析数千种不同的探针。This enables researchers to quickly identify specific genetic markers associated with antimicrobial resistance, paving the way for more targeted treatment strategies.Recent advancements include DNA sequencing, strain genotyping, and identifying gene functions, as well as locating resistance genes and changes in mRNA expression.一种创新的方法涉及在Eppendorf管中开发的选定基因靶标的阵列。The chip embedded in the tube contains optimized sets of oligonucleotide probes specific to certain organisms or antimicrobial resistance genes.这允许自定义单个细菌或组的芯片。从样品制备到检测的测定过程在单个管中在6-8小时内完成。实时PCR已广泛开发,使用荧光在单个反应管中结合了扩增和检测。该系统比常规PCR具有显着优势,包括速度,简单性和减少手动程序。基于荧光的方法可以检测DNA产物或通过与荧光标记的探针杂交提高特异性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。 此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。 可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。 抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。 基于乳胶的试剂盒广泛用于血清学组和毒素检测。 在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。 通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。 ELISA方法可以反向使用以定量检测抗体。 在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。 任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。 某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。 但是,这种方法缺乏可重复性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。基于乳胶的试剂盒广泛用于血清学组和毒素检测。在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。ELISA方法可以反向使用以定量检测抗体。在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。但是,这种方法缺乏可重复性。Haemagglutinins can be detected in tissue culture, and red cells can be coated with specific antibodies to agglutinate in the presence of homologous virus particles.荧光染料可用于染色组织或生物体,从而在紫外线下可视化。Antibody molecules can be labeled with fluorochrome dyes, enabling direct immunofluorescence procedures for highly sensitive antigen identification.该技术将抗体技术与PCR方法相结合,以增强抗原检测能力。分子生物学中的一种新方法涉及将DNA分子与抗原抗体复合物联系起来,从而产生特定的结合物。此附件允许通过PCR扩增,验证抗原的存在。免疫-PCR的增强灵敏度超过ELISA的105倍,因此检测到只有580个抗原分子。细菌种群表现出不同的结构,从高度多样化到非常相似。Recombination frequency is the primary determinant of population structure, with some species experiencing high recombination rates and others exhibiting rare recombination events.Species such as Neisseria gonorrhoeae are naturally transformable, displaying high recombination frequencies, while Salmonella enterica populations exhibit low recombination rates.细菌克隆可能显示出瞬态或持久特征。Panmictic与克隆人群的概念突出了这两种类型之间的繁殖,重组,等位基因排列和选择性压力的差异。In each family lie many genera of each type.键入分离株可以与参考标记,识别细菌物种中的菌株和分离株进行比较。区分类似菌株的能力在追踪社区或医院环境中感染的来源或传播方面具有重要意义。已经开发了各种键入方法来帮助这一过程,这可能涉及从相同起源菌株之间识别较小的差异。尽管单个打字方法可以证明相同的响应,但这不是两种菌株相同的结论性证据。但是,使用多种打字方法大大提高了相似性的置信度。键入技术可以在不同的流行病学水平上应用,包括微流行病学,宏观流行病学和种群结构分析。从键入中得出的数据可以通过识别共同或点源,区分混合应变感染以及识别再感染与复发与复发来帮助控制感染。一些方法还有助于识别与疾病相关的特定类型,例如大肠杆菌O157和溶血性尿毒症综合征。为了使方法被认为是可靠的,必须在实验室环境和临床上可以重现。在流行病学研究的背景下,首选多种键入方法,因为它们可以针对不同的特征。这些包括生物化学测试,这些测试定义了物种内的生物型,抗性分型检测对化学物质敏感性的变化以及基于营养需求的生长需求的辅助分型。可以使用此方法分析质粒和染色体DNA。此外,许多细菌的表面结构都是抗原性的,可以使用针对它们提出的抗体将分离株分为定义的血清型。物种可以根据其独特特征分为几种抗原类型。对于某些物种,血清分型是一种识别和区分不同菌株的高效方法。在其他情况下,抗原表位的保存使血清型对流行病学目的的有用程度降低。例如,沙门氏菌的物种可以通过其体细胞和鞭毛血清型来定义。研究表明,囊抗原可能在某些生物的致病性中起作用,许多疫苗通过刺激对这些抗原的抗体来起作用。噬菌体键入是一种用于识别和区分细菌菌株的方法。这涉及使用特定噬菌体的凝集或降水反应,如果适当地适应,这可能具有很高的歧视性。但是,某些噬菌体集缺乏稳定性会导致广泛的噬菌体组,而不是定义的类型。此外,控制噬菌体分型结果解释的关键因素是歧视和可重复性。噬菌体与细菌之间的相互作用是一个复杂的过程,涉及吸附,DNA注射以及裂解或复制。裂解或有毒的噬菌体可以在复制循环结束时裂解宿主细胞,从而释放可能感染相邻细胞的新噬菌体颗粒。但是,其有效性取决于噬菌体的适应和系统的稳定性。噬菌体键入已用于包括微生物学和流行病学在内的各个领域,以识别和跟踪细菌菌株。尽管存在这些局限性,但噬菌体打字仍然是理解不同细菌菌株及其特性之间关系的重要工具。只有在两个强烈的裂解反应表现出两种不同的菌株时,才能识别出两种不同的菌株。细菌素是大多数细菌物种产生的自然存在的抗菌物质,主要靶向与生产菌株同一属内的菌株。通过分析产生的细菌素的光谱或对标准面板细菌素的敏感性,细菌素键入可以定义不同类型的细菌。蛋白质组学分析,涉及具有强洗涤剂的丙烯酰胺凝胶中的凝胶电泳,也可以通过可视化数千种蛋白质并比较分离物之间的带模式来鉴定细菌物种。另外,研究人员已使用凝胶电泳来分析代谢酶,可以使用特定底物检测到该酶,用于物种内的克隆分析。限制性核酸内切酶是在特定序列识别位点切下DNA的酶。这些切割的频率取决于寡核苷酸序列,限制位点的频率以及所检查的物种的G+C含量的百分比。频繁切割的核酸内切酶产生许多小片段,可以通过琼脂糖凝胶中的常规电泳解决,并通过用染料染色检测。通过引入脉冲或在电场方向上变化,可以分开碎片至10 MB。相比之下,不经常的切割酶产生的大型DNA片段需要脉冲场凝胶电泳(PFGE)进行分离。该技术涉及将细菌包裹在琼脂糖塞中,用蛋白酶K酶消化细胞,然后用酶消化DNA。CORTOUR夹具均匀的电场(Chef)设备通常用于PFGE,并具有在六角形阵列中排列的24个电极。运行时间通常在30到40小时范围内,尽管已经描述了较短的协议。几个因素影响了这些分析的结果,包括正在检查的DNA类型,酶和反应条件的选择以及所使用的设备质量。DNA样品的质量和浓度,琼脂糖凝胶电压和脉冲时间,缓冲液强度和温度会影响脉冲场凝胶电泳(PFGE)的结果。虽然解释PFGE曲线可能是由于不同物种之间的带状模式的变化而具有挑战性的,但已通过Tenover确定了特定的标准以确定差异的重要性。通常,与显示剖面无差异的单个事件中的分离物被认为是无法区分的。一到三个频段差异的人密切相关。四到六个乐队可能表明可能的关系;七个或更多的差异表明不同的菌株。但是,该规则应谨慎应用,因为即使在同一克隆的成员之间,某些物种也会表现出显着差异。Pearson系数是另一种常用的方法,具有不需要定义特定带位置的优势。可以使用计算机辅助分析软件包来计算菌株之间相似性的系数,例如jaccard和骰子系数,这些系数使用配置文件中的一致频段来确定百分比相似性。经常使用85%相似性的截止点,但应通过实验相关且无关的应变集设置。DNA探针可以根据克隆的特异性,随机序列或通用序列检测靶DNA中的限制位点异质性。rubotyping检测rDNA基因基因座的变化,并已普遍应用于各种物种。其他常用的探针是可能定义种群克隆结构的插入序列。PCR(聚合酶链反应)是一种允许在受控条件下放大特定DNA序列的技术。可以通过使用PCR的重复放大循环来制作由特定寡核苷酸引物定义的基因组区域的多个副本。该方法已广泛用于DNA指纹和键入,利用DNA分子中的可变区域,例如串联重复区域的可变数量或具有限制性核酸内切酶识别序列的区域。两种方法都有局限性,这是由于错误启动,不同的带强度以及电泳迁移差异引起的可重复性问题。基于重复序列的PCR(REP-PCR)索引在整个基因组中多个重复序列中的变化,而自动化的REP-PCR系统对应变键入显示了有望,并且可以提供与PFGE相似的歧视。狼在can属中,而狐狸则处于喧嚣中。放大的片段长度多态性结合了限制性核酸内切酶消化与PCR,以优化基因组之间单碱基对差异的可重复性和分辨率。该技术使用核苷酸测序来分析管家基因,该基因慢慢多样化,不受选择性的作用。多焦点序列分型(MLST)可以视为确定的基因分型。但是,MLST可能对诸如结核分枝杆菌等高度均匀的物种没有效。为了增加歧视,由于环境变化,毒力相关的基因提供了较高的序列变化,因此已经针对了毒力相关的基因。通过PCR扩增基因间区域,并测序了500 bp的内部片段以识别等位基因多态性。多焦点限制输入引入了放大管家基因的限制消化,从而消除了对测序的需求。可变数字串联重复序(VNTR)是拷贝数变化的短核苷酸序列,可用于快速且可再现的键入。识别其他遗传基因座可以提供进一步的见解,但随着时间的流逝,它们的稳定性仍然存在争议。DNA测序技术的最新进展使得分析整个基因组序列成为可能,从而可以更精确的比较和细菌的键入。这种方法涉及生成可以组装并与先前分离株进行比较的短核苷酸序列读取。与这些高级分析相关的成本与传统方法变得越来越具竞争力。这样的分析可以在同期和历史分离株之间建立进化关系,从而对细菌进化有更明确的理解。此外,这项技术通过提供明确的流行病学信息并确定有助于抗生素耐药性和抗原选择压力来转化医学细菌学的重要潜力。资料来源:Barrow Gi,Feltham RKA,编辑;加里斯总经理,编辑; Kaufmann我; Murray PR,Baron EJ,Jorgensen JH,编辑;欧文·RJ; Schleifer KH; Spratt BG,Feil EJ,Smith NH; Tenover FC,Arbeit Rd,Goering RV; Van Regenmortel MHV,Fauquet CM,Bishop DHL,编辑; Woese Cr。分类类别是称为分类单元的层次组,其中包含一小部分物种,该物种来自一个相对较新的共同祖先。可以在下面可视化整体层次结构以供参考:尽管研究不同生物体的科学家在分类方案中有所不同,但属背后的一般概念是它代表物种祖先相关的物种,并且与其他属不同,不包括不必要的物种。确定这在于每个研究者,但是这些一般指南在属属方面保持分类相当狭窄。属属的分类单元通常包括群体之间可识别的身体形式。例如,Felidae和Canidae分别代表类似猫的生物和类似狗的生物。最后一步,物种定义了在连续单位中共同繁殖的人群和群体。在一起,这些名字告诉您有关生物体的很多信息。在大多数情况下,由于遗传,行为或形态学差异,不同的属将不会繁殖。Carl Linnaeus通过他的生物生物命名计划(二项式命名法)普及了“属”一词,尽管他对属的定义与我们的现代观点有所不同,但在二项式命名法中使用通用epithets在二项式术语中的使用仍在继续。通用称呼是二项式命名法中描述有机体所属属的动物名称的两个单词。第二个单词或特定的称呼描述了有机体所属的生物或物种更紧密相关的群体。通过了解一个人也知道家庭,秩序和所有其他分类分类。由于分层群体是由生物之间的相似性安排的,所以这些关系告诉了我们很多有关单个动物的信息。知道该物种可以告知我们动物与该属中其他动物的独特性。例如,Honey Badger具有科学名称Mellivora Capensis。有时,属可能包含数百种物种,尤其是在鱼类和无脊椎动物中。这种品种具有误导性,因为它应该反映进化。进化多样性决定了属内生物的数量。如果许多物种随着属的传播而出现,将会有许多物种。相反,如果只有一个物种幸存,则只有一个物种。分类分类是一个持续的过程,每天都描述了新的属。一些新发现的生物从未被命名,而另一些有机体则根据DNA分析重新分类。通过分析DNA,比较性状并提出系统发育,科学家假设最可能的进化进展。这将为命名惯例提供信息,并确定哪些物种可以成为独特的属。物种代表属内生殖分离并与其他群体独特的群体。家庭是分层分类中属的分类单元。分类单元是指具有相似特征的群体。两条鱼一起游泳可能不会繁殖,而是具有类似的特征,与其他任何海洋鱼不同。如果它们可以杂交,则将被视为物种。北极熊和棕熊在同一属中是不同的物种,但仍可以成功繁殖。这是因为它们占据了独特的生态位,很少彼此遇到繁殖。生态障碍可以阻止它们自然繁殖,即使它们的后代是可行的。随着气候变化耗尽冰盖,可以将北极熊推向较低的纬度,并可能与棕熊杂交。科学家辩论是否应基于进化连接和物理特征将新物种添加到属中。如果两组共有共同的血统,则它们应属于同一属,即使它们在细胞外基质产生等特征上有所不同。在Fakus细菌的情况下是一种具有相似DNA但缺乏定义该属的独特基质的新物种,分类学家必须权衡多个领域的证据。通过分析解剖学,行为和遗传数据,科学家可以重建生物体之间的关系,并就分类做出明智的决定。