简单摘要:在动物中,性别二态性状普遍存在,并在繁殖、求偶和环境适应中发挥重要作用,尤其是在昆虫中。在本研究中,我们利用 CRISPR/Cas9 基因组编辑系统对亚洲玉米螟性别决定途径中的 Masculinizer ( Masc ) 和 doublesex ( dsx ) 基因产生体细胞突变。OfMasc 和 Ofdsx 基因是家蚕关键性别调节因子的结构直系同源物。OfMasc 和 Ofdsx 基因突变会导致外生殖器异常、成虫不育以及包括翅膀色素沉着、基因表达模式和 dsx 性别特异性剪接在内的性别二态性状的性别逆转。这些结果表明 Masc 和 dsx 基因是性别二态性状的保守因子,因此是控制亚洲玉米螟和其他鳞翅目害虫的潜在目标基因。
有效的灭菌和消毒对于牙科实践中的感染控制至关重要,减少了与医疗保健相关的感染并确保患者的安全。本综述探讨了牙科中使用的各种灭菌和消毒方法的原理,应用和局限性,包括热灭菌(蒸汽和干热),化学灭菌(氧化物氧化物,过氧化氢)和辐射方法(紫外线(UV)(UV)和γ射线)。重点是每种方法针对一系列病原体的有效性,它们对不同牙科仪器的适用性以及技术的进步,例如汽化的过氧化氢系统和抗菌涂层。高压灭菌灭菌仍然是基石,因为它的可靠性,而紫外线和臭氧等方法具有创新的,材料友好的替代品。通过生物学指标验证灭菌功效的重要性并维持适当的储存方案以确保也突出显示无菌性。通过将传统技术与新兴技术整合在一起,牙科实践可以增强感染控制标准,同时适应现代挑战。
基因驱动技术由新的基因工程工具 CRISPR/Cas9 实现,旨在对野生种群或整个物种进行基因改造、替换或消灭。到目前为止,该技术已被证明对蚊子、老鼠、苍蝇、酵母和线虫有效。但原则上,它可以用于对任何有性生殖生物进行基因改造。基因驱动生物 (GDO) 旨在与野生同类交配,并将其改造的基因 100% 传播给其后代。这种强制遗传模式绕过了自然界正常的遗传规则。它会引发基因链式反应,其中基因工程工具 CRISPR/Cas9 以及有时是额外的新基因会代代相传。基因驱动引起的遗传变化可能导致其后代不育或性别比例改变,从而导致其种群崩溃。1 预计在不久的将来将进行自然界的首次田间试验。
Crystal Bio 的能力 Crystal Bio 是一家领先的合同研究组织 (CRO),专门提供生物治疗的综合分析服务。我们的专业知识涵盖许多模式,包括抗体药物偶联物、单克隆抗体、融合蛋白和与战略合作伙伴的 mRNA-LNP 治疗。我们提供所有必要的分析工具来测量相关的 CQA,包括高分辨率 LC-MS、液基色谱法(HIC、IEX、SEC、RPLC、CE 和 cIEF),以及全面的生物分析工具,包括各种结合和基于细胞的测定、基于效应功能的测定(如替代细胞毒性测定和直接 ADCC、ADCP 和 CDC 测定)、抗 ADC 抗体测定、qPCR、ELISA、内毒素、无菌、生物负载和基于细胞的生物测定等。我们的能力还扩展到生物治疗的方法开发和分析表征。这种整体方法可确保遵守 CMC 部分概述的严格监管要求,使我们成为 IND 前、I 期和后续提交的宝贵合作伙伴。
大豆酪蛋白消化物琼脂是一种广泛使用的培养基,它支持多种生物的生长,甚至是奈瑟菌、李斯特菌和布鲁氏菌等苛刻菌的生长。添加血液的培养基提供了完美界定的溶血区,同时由于其含有氯化钠,可防止红细胞溶解。它在医疗行业中经常用于生产抗原、毒素等。它简单且不含抑制剂的成分使其适用于检测食品和其他产品中的抗菌剂。胰蛋白胨大豆琼脂被各种药典推荐作为无菌测试培养基(6、3)。胰蛋白胨大豆琼脂符合 USP(6)的规定,用于微生物限度测试和抗菌防腐剂有效性测试。Gunn 等人(2)使用该培养基来培养苛刻菌,并研究添加 5%v/v 血液后的溶血反应。胰蛋白胨和大豆蛋白胨的组合使该培养基营养丰富,可提供氨基酸和
我于1999年在卡萨拉戈德(Kasaragod)的喀拉拉邦农业研究站开始了我的旅程。这是在印度园艺研究所担任农业科学家的一年之后。在热情的教学驱动下,我在这个领域的经验中积累了二十年的经验。多年来,我的角色发展了;我在Vellayani的RARS(Southern Zone)担任研究副主任,目前是Vellayani农业学院教师的代理院长。在植物生理学系期间,我从事各种机构发展计划,包括技术单元,图书馆发展委员会,职业指导中心和PTA。我的研究主要围绕着水稻中热敏性的雄性无菌性,重点是通过花粉选择和选择性施肥来繁殖干旱的水稻品种。
摘要 杂种优势对于提高作物的产量和质量至关重要。人们已经对开发杂种优势的杂交品种进行了深入研究,并证明其是稳健有效的。细胞质雄性不育 (CMS) 在杂交生产中得到了广泛的研究。CMS 的潜在机制包括细胞毒蛋白的作用、绒毡层细胞的 PCD 和恢复因子的不当 RNA 编辑。另一方面,育性的恢复是由育性恢复 (Rf) 基因或恢复基因的存在引起的,这些基因会抑制导致不育的基因的作用。线粒体和核基因组之间的相互作用对几种调控途径至关重要,正如在 CMS-Rf 系统中观察到的那样,并且发生在基因组、转录、转录后、翻译和翻译后水平。这些 CMS-Rf 机制已在多种作物系统中得到验证。本综述旨在总结CMS–Rf系统的核线粒体相互作用机制,并阐明利用基因工程和基因组编辑等生物技术干预手段实现基于CMS的杂交种。
从利雅得的一个花园收集了活的Samsum蚂蚁。群。通过在4°C下摇动12小时,在可口可乐溶液中使用1:10(w/v)研磨了冷冻的samsum蚂蚁并使用1:10(w/v)提取。在4°C离心30分钟后收集上清液。提取物使用Millipore细菌滤液通过0.8µm,0.45 µm进行灭菌,最后用0.22 µm的过滤器对提取物进行灭菌。不育和纯度测试。在皮肤刺测试中,添加了50%的甘油,以使提取物保持稳定长达一年。对于急速免疫疗法,还可以在可口可乐的溶液中制备提取物,但苯酚晶体的量减少到一半(仅0.2%)。
限制脉冲潜在产量的主要限制因素包括除了社会经济因素以外的脉冲生长区域中普遍存在的生物和非生物应力。在生物胁迫中,与根腐病配合物相结合的镰刀菌可能是最广泛的疾病,除了干根腐烂和锁骨腐烂外,还会造成鹰嘴豆的巨大损失。虽然镰刀菌,无菌性摩西和植物疫病会导致鸽子,黄色马赛克,尾虫叶斑,粉状霉菌和叶片皱纹和叶片造成大量损失,并在Vigna作物(Mungbean和Urdbean)中造成了相当大的损害。在鹰嘴豆和鸽子中的革兰氏荚虫(Helicoverpa Armigera)中,岩豆和鸽子中的革兰氏pod虫,木豆中的豆荚在乌尔德比恩和蒙比e造成严重损害各自的作物的豆荚,粉丝,粉丝,jassids和thrips。bruchids是储存的脉冲晶粒中最严重的害虫,在管理中需要最高优先级。杂草也会大大损失脉冲。最近,线虫已成为许多地区成功种植脉冲的潜在威胁。