光刺激(来自数字微型摩尔设备的2-D灯罩用固态CW激光照明)和两个光子成像仅限于不同的光学Z-Planes,可以通过分别翻译扩散器和主要目标来灵活,独立地调整这些光学Z-plan。 (底部)在光刺激和成像期之间交替(滚动)。每个红色条代表一个多光子成像的单一框架。光刺激和成像期交错。(b)显微镜示意图。dm,二分色镜。dmd,数字微型摩尔设备。i,虹膜膜片。L1-L12,镜头。o,主要目标。PMT,光电倍增管。PS,潜望镜。s,快门。SM,扫描镜子。(c)(顶部)使用可移动扩散器将图案化的光刺激和多光子成像平面解)的例证。以4F镜头配置将扩散器成像成样品中;沿光路的扩散器转换会导致相应的投影平面轴向移动。OFP,客观焦平面。 PSP,光刺激平面。 (d)DMD芯片到CCD摄像头到2P显微镜注册。 我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品 1d)至148OFP,客观焦平面。PSP,光刺激平面。(d)DMD芯片到CCD摄像头到2P显微镜注册。我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品1d)至148(i)两个光子显微照片,分别为10 µm荧光微粒;箭头标记了两个微粒,这是较大的DMD调节投影靶模式(8 microbeads)的一部分,它们被视为受托点; (ii)更大的视野(包括目标微头)的广阔场荧光图像(全场照明); (iii)从2p图像中选择的ROI用于生成DMD-Chip灯罩;这些进一步投影在主要的客观焦平面上,并使用主CCD摄像头(CCD 1)成像; (iv)DMD生成的照片刺激口罩和(II)中10 µm微粒的宽场荧光图像的覆盖层;请注意,荧光仅限于由DMD光刺激掩模靶向的微粒,并具有最小的溢出到相邻(靶)的微粒(请参阅信托标记)。
本研究的目的是使用高频重复的经颅网络网络刺激或经颅的直流电流刺激和经皮脊柱直流电流刺激在复杂的重新疼痛综合征患者中比较运动皮层刺激的镇痛作用。三十三名患有复杂区域疼痛综合征的患者被随机分为三个治疗组之一(重复的经颅磁刺激,n = 11;经颅直流电流刺激,n = 10;经脑脊柱直流电流刺激,n = 12),n = 12),并接受了3周的刺激阶段(诱导阶段)的12个月(诱导阶段)(4个月)(4个月)(4个月)(4个月)(4个月(4个月)(4个月)(4个月(4个月)(4个月)(4个月)(4个月)(主要终点是在治疗前的一个月(基线),5个月的刺激期和治疗后1个月内用视觉数值评估的平均疼痛强度。与经皮的脊柱直流电流刺激组相比,每周的视觉数值量表疼痛评分在所有时间点都显着引起,在重复的经颅磁刺激组的最后两个时间点(5个月的刺激期的结束和1个月后的结束),但在Tran Scranial Direct Direct Direct刺激组中。与重复的经颅磁刺激(P = 0.008)和转颅直流电流刺激相比,使用经皮脊柱直流刺激在感应期结束时观察到明显的疼痛缓解(P = 0.003)。在感应阶段发现了这种功效,此后得到了维持。在这项试验中,与运动皮层刺激技术(重复的经颅磁刺激,经颅直接电流刺激)相比,经皮脊柱直流电流刺激更有效地缓解了复杂区域疼痛综合征患者的疼痛。这项研究需要进一步研究,以确认经皮脊柱直流刺激作为复杂区域疼痛综合征的治疗选择的潜力。
图1。e-field剂量在主题一级优于其他给药策略。(a)选择所有线圈位置以最大化皮质靶刺激。(b)基于电动机阈值(MT)(上排)的剂量在不同的皮质靶区域(柱)施加相同的刺激器强度,从而产生高度可变的皮质刺激强度(以每米的电压为单位; V/m)。“ Stokes”方法(中行)线性地调节了线圈到目标距离的刺激器强度,但仍会导致跨靶标的皮质刺激的次优匹配。e-field的给药(底行)为所有靶标提供相同的皮质刺激强度。颜色:| e |。百分比:MT刺激器强度的百分比。所有电子场均在灰质表面可视化,以示例性主题。(c)刺激器强度(上排)与皮质刺激暴露(底行)之间的关系在皮质靶标之间有很大不同。在皮质靶标上提取刺激暴露,并与MT强度下的M1暴露有关(“ 100%”)。
方法和分析:认知功能的Taichi-MSS(Tai Chi和多感觉刺激)是一项在苏州和上海进行的多中心,随机对照试验(RCT),招募了88名60岁以上的参与者。参与者将被随机分配给四组之一:太极拳,多感觉刺激,太极拳与多感官刺激或对照组合。干预措施将持续6个月,在3、6和9个月中进行随访评估。主要结果包括使用蒙特利尔认知评估(MOCA),迷你精神状态检查(MMSE),特定领域的认知测试,纯音调听觉(PTA)和sniffin'''sniffin'''sniffin's Sticks odor识别识别测试。次要结果涉及大脑激活,通过功能磁共振成像(fMRI)扫描测量。fMRI将用于评估大脑结构和连通性的变化,重点是神经可塑性。将使用混合效应模型分析数据。错误的发现率(FDR)将是多次比较的校正方法,以控制误报的预期比例。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2025年2月21日发布。 https://doi.org/10.1101/2025.02.20.25322639 doi:medrxiv preprint
1。Alsaab,H。等。2022年12月6日。药物2022,14(12),2728; doi:10.3390/pharmaceutics14122728 2。Jia,Z。等。 2022年9月20日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第13-2022卷。 doi:10.3389/fimmu.2022.952231 3。 Lasek,W。等。 2014年2月11日;癌症免疫学,免疫疗法。 doi:10.1007/s00262-014-1523-1 4。 nguyen,K。等。 2020年10月15日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Jia,Z。等。2022年9月20日。正面。Immunol。,秒。 癌症免疫和免疫疗法。 第13-2022卷。 doi:10.3389/fimmu.2022.952231 3。 Lasek,W。等。 2014年2月11日;癌症免疫学,免疫疗法。 doi:10.1007/s00262-014-1523-1 4。 nguyen,K。等。 2020年10月15日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Immunol。,秒。癌症免疫和免疫疗法。第13-2022卷。doi:10.3389/fimmu.2022.952231 3。Lasek,W。等。2014年2月11日;癌症免疫学,免疫疗法。doi:10.1007/s00262-014-1523-1 4。nguyen,K。等。2020年10月15日。正面。Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Immunol。,秒。癌症免疫和免疫疗法。第11-2022卷。doi:10.3389/fimmu.2020.575597
研究身体性能的神经机制是运动神经科学领域的越来越多的研究重点。Sport is more and more benefiting from and contributing to a greater awareness of concepts such as neuroplasticity (i.e., the structural and functional adaptations in specific brain and spinal circuits), and neuromodulation techniques (i.e., the application of low-level intensity currents to induce polarity-specific changes in neuronal excitability).神经塑性在强度和调节的领域不广泛理解;然而,它从根本上影响了运动员在运动中的运动和表现。理解神经塑性的基本概念可以指导力量训练,这被定义为抗性运动,从而增加了力量能力。要执行多关节运动,大脑必须与合适的肌肉组坐标,以及时执行肌肉收缩。因此,与运动学习有关的力量训练需要在运动皮层中引发的复杂肌内和肌内配位。此外,力量训练会导致中枢神经系统(CNS)(尤其是在运动皮层中)中使用依赖性塑料随时间变化(称为长期增强,Cooke and Bliss,2006)(Hortobagyi等,2021)。广泛接受的是,力量训练需要在培训的早期阶段进行神经适应(Sale,1988; Hortobagyi等,2021)。这一假设的基础是研究表明,训练的初始阶段会导致力产生大量增强,而没有肌肉质量的改变(即结构变化)。特别是,在训练的第一周内,肌肉力量产生的运动单位适应发生(Häkkinen等,1985)。,直到最近,有关力量训练的文献尚未最终确定CNS最负责这些适应的部分。最近的一项灵长类动物研究表明,通过网状脊髓束强度训练引起的脊柱上的脊髓变化与肌肉性能的变化有关(Glover and Baker,2020)。最近的荟萃分析(Siddique等,2020; Hortobagyi等,2021;Gómez-Feria等,2023)强调了一种趋势,趋势趋于同时进行皮质脊髓兴奋性和肌肉力量,并在对肌层降低后的抑制作用后,肌肉力量降低了降低的降低。但是,重要的是要注意,这种趋势根据所选训练方式具有相当程度的异质性(Gómez-Feria等,2023)。迄今为止,鉴于对耐强度训练的神经影响的研究很少,尚不清楚产生大量和持久的神经变化所需的力量训练需要多少。
与其他国家(尤其是美国)形成鲜明对比的是,只有有限数量的保险公司用重复的经颅杂志刺激(RTMS)偿还治疗,而没有经跨颅电气刺激(TES)。因此,欧洲非侵入性脑刺激(NIB)的研究和临床降低的治疗可用性和投资将落后。出乎意料的是,突然不受欢迎的监管变化使欧洲局势变得更糟。在2022年12月,欧盟重新分类的RTM和低强度TE作为III类,最高风险类别(https://eur-eur-lex.europa.eu/eli/eli/eli/eg_impl/2022/2347/oj)。在先前的监管框架(医疗设备指令,MDD)下,欧盟并未具体规定调节NIBS设备,但大多数人被分类为IIA类(可管理的风险,批准的治疗效果)。III类设备(例如深脑刺激植入物)被定义为侵入性,因为它们直接连接到循环系统或中枢神经系统。尽管这种新的重新分类目前仅是“没有预期的医疗目的的产品”(对于许多研究人员和医生不清楚的术语),这是关于RTMS和TES的风险和不利影响的证据 - 这是这种恢复性的综合性 - 非常有效的 - 非常适合。欧盟显然评估了NIBS对患者的安全构成比以前想象的更大的风险。据称TMS/TE可以诱导“非典型大脑发育”或“脑活动的异常模式”)。此评估是基于与可用科学证据相矛盾的RTM和低强度TE的错误陈述,许多既定的主张和假设都是错误的(例如,同样,根据实际临床数据,对RTMS/TES相关的癫痫发作风险的显着提及与该领域中最新的共识声明相矛盾,这表明观察到的癫痫发作率远低于以前的指南。先前关于癫痫发作风险的谨慎不再得到科学证据的支持[1,2]。如何建立该欧盟裁决是很难理解的。显然,在2021年5月,引入了一项新的医疗设备法规(MDR),并专门针对附件XVI的非医疗用途提出了NIBS。MDR的应用将通过“过渡期”(第120条)逐渐发展,直到2024年5月,这意味着只要遵守过渡规则,就可以允许现有的NIBS产品(来自先前MDD的I类和IIA类的IIA)一直保持在市场结束。
情绪是我们精神生活和大脑功能的重要组成部分。它们可以用以下三要素来定义:(1)情感(有意识的体验)、(2)运动和行为适应以及(3)自主神经系统反应(Hamann,2001;Lang,1995)。具有正价的情绪对生活质量和幸福感有重要影响。它们可以通过促进决策、解决问题、社交互动和创造力来提高认知和社交能力(Ashby 等人,1999;Carpenter 等人,2013;Fredrickson,2004;GROSS,2002))。积极情绪的产生和调节主要使用功能性磁共振成像进行研究,其中不同的任务会引起愉悦的感觉,包括感官体验(Koelsch & Skouras,2014)、观看亲人的图像(Bartels & Zeki,2000;Nitschke 等,2004)或其他图像或影片(Brassen 等,2011;Garavan 等,2001;Kim & Hamann,2007)、回忆或想象愉快的情景(Matsunaga 等,2016;Pelletier 等,2003;Zotev 等,2011)或社会关系(Scharnowski 等,2020)。尽管根据所用范例会有所不同,但这些研究强调了腹侧“情绪”皮质-皮质下网络的含义,包括眶额皮质、前扣带皮质、岛叶、杏仁核以及尾状核、壳核、苍白球和脑干。在用皮层电图或立体定向脑电图 (SEEG) 对耐药性癫痫患者进行术前评估的背景下,也已使用直接脑电刺激 (EBS) 研究了愉悦意识感觉的神经基础。通过 EBS 对清醒患者进行脑部探索有几个优势。SEEG 具有比功能性 MRI(Mercier 等人,2022 年)更好的时间分辨率,并且靶向 EBS 允许建立直接的因果“刺激临床事件”关系。然而,只有少数研究表明 EBS 可以引起情绪感觉,重现常见的发作症状或罕见的癫痫发作期间不会遇到的感觉。Penfield 和他的合作者是描述患者在手术前刺激期间对 EBS 的反应中的体验和情绪现象的先驱之一(Penfield & Jasper,1954)。最近关于 EBS 对情绪影响的研究提供了所涉及皮质区域的功能性大脑图(Drane 等人,2021 年;Gordon 等人,1996 年)。特别是,杏仁核一再参与触发情绪反应,这些反应主要被认为是负面的(Bujarski 等人,2022 年;Inman 等人,2020 年;Lanteume 等人,2007 年)。大脑的其他区域也已被证明能产生情绪影响,比如其他内侧颞叶区域(鼻极皮质和颞极皮质)(Bartolomei 等人,2004 年;Meletti 等人,2006 年;Smith 等人,2006a 年)和岛叶(Bartolomei 等人,2019;Mazzola 等人,2019)。然而,与基于刺激的涉及其他认知和情绪功能的大脑区域的研究相比,关于 EBS 引发的积极情绪的研究仍然非常稀少(Drane 等人,2021),而且我们缺乏大脑网络对愉悦感觉影响的因果证据。
摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。