。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2024.11.11.622161 doi:Biorxiv Preprint
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
深部脑刺激是一种广泛用于治疗帕金森病 (PD) 的方法,但目前缺乏对不断变化的临床和神经状态的动态响应。反馈控制有可能提高治疗效果,但“自适应”神经刺激的最佳控制策略和其他好处尚不清楚。我们在三名 PD 患者(五个半球)的正常日常生活中实施了由丘脑底核或皮质信号控制的自适应丘脑底核刺激。我们使用数据驱动的宽频率范围和不同刺激幅度的场电位分析来确定残余运动波动的神经生理生物标志物。任一部位的窄带伽马振荡(65-70 Hz)成为刺激期间感知的最佳控制信号。一项盲法随机试验表明,与临床优化的标准刺激相比,运动症状和生活质量有所改善。我们的方法凸显了基于数据驱动的控制信号选择的个性化自适应神经刺激的前景,并可能应用于其他神经系统疾病。
摘要在缺席癫痫患者中,反复癫痫发作可以显着降低其生活质量,并导致尚无法治疗的合并症。缺失癫痫发作的特征是与意识的短暂变化相关的脑电图上的尖峰和波排放。但是,在癫痫发作期间和外部,大脑对外部刺激的反应仍然未知。这项研究旨在研究来自Strasbourg(Gaers)的遗传缺失癫痫大鼠(GAERS)的反应性,这是一种缺乏癫痫的大鼠模型。动物是使用安静的零回波时间,功能磁共振成像(fMRI)序列在非墨水清醒状态下成像的。在间隔和发作时期应用了感觉刺激。全脑血流动力学反应。此外,使用平均场模拟模型来解释状态之间视觉刺激的神经反应性的变化。在癫痫发作期间,对两种感觉刺激的全脑反应受到抑制并在空间上受到阻碍。在皮质中,尽管采用了刺激,但在癫痫发作期间血液动力学反应在癫痫发作期间呈负极极化。平均场模拟显示由于刺激引起的活动受到限制的传播,并且与fMRI发现很好地达成了一致。结果表明,在缺席的情况下,在这种缺失的癫痫过程中,缺乏癫痫发作会阻碍感官处理,甚至抑制了感官处理。
保留所有权利。未经许可不得重复使用。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此版本的版权所有者于 2024 年 11 月 23 日发布。;https://doi.org/10.1101/2024.11.20.24317674 doi:medRxiv 预印本
神经外科,结构和功能连接实验室项目,Azienda Provinciale Per I Servizi Sanitari(APSS),9 Largo Medaglie D'Oro,38122,Trento,Trento,意大利BTRENALO B,ITALY B TRENTO B,NEUROSER GURIGY和NEURORGIGY和NEURELOGRY和NEURELOGY和NEURELOGY和NEURELOGY和NEURELOGY,NERURELOGY和NEURELOGY,NERTERINGER UNIVEMENT,NORTHWESTERN UNIXICY神经外科手术室,神经科学和神经康复部,BambinoGesù儿童医院IRCCS,4 Piazza Sant'Onofrio,00165,00165,意大利d Bruno Kessler Foundation(FBK)法国蒙彼利埃,国家健康与医学研究所(INSERM),U1051,“中枢神经系统的可塑性,人类干细胞和神经胶质肿瘤”,蒙彼利埃大学医学中心蒙彼利埃神经科学研究所,80 AV AVERTIN FLICHE,MONTPELLIER,MONTPELLIER,FRANCE,FRANCE
1985年引入的经颅磁刺激(TMS)已成为研究脑掩盖关系和治疗干预措施的重要工具。重复的TMS(RTMS)作为一种治疗工具,已经显示出对包括自闭症在内的各种神经精神病疾病的希望,这些神经精神病患者影响了大约1%的全球人群。证据表明,非典型神经可塑性是自闭症神经生物学的特征。与神经型对照相比,使用TMS范式(例如theta-burst刺激(TBS))的研究表明,自闭症成年人运动皮层的过度长期增强(LTP)的形式过多的神经可塑性或过度塑性性。超塑性可能会对认知和行为结果产生负面影响。我们提出的基于神经塑性的RTMS干预方案旨在解决自闭症成年人的运动功能,感觉敏感性和执行功能困难。我们提出了一个可测试的框架,以评估运动,感觉和背外侧前额叶皮层中的神经可塑性,假设自闭症成年人的过塑性存在。我们预计这种超塑性是自闭症成年人的运动,感觉和执行功能困难的基础。此外,我们建议研究双侧RTM的功效,以降低过度塑性并改善自闭症成年人的这些功能。这种方法不仅试图增强治疗选择,而且还提供了对一些常见自闭症相关困难的脑机制的生物学见解。
简介:治疗记忆障碍对神经心理学家来说是一个巨大的挑战,他们越来越多地将非侵入性大脑刺激与传统的认知训练相结合。这项荟萃分析(在 PROSPERO 注册:CRD42023460773)研究了阳极经颅直流电刺激 (a-tDCS) 对进行性和非进行性脑损伤患者记忆的影响。材料和方法:从公开数据库中确定符合条件的随机对照研究 (RCT)。两名独立审阅者使用 Cochrane 标准评估偏见风险,并计算记忆结果的 Hedges' g 系数值。结果:分析中使用了 22 项 RCT(23 项实验,577 名参与者)的数据。一些研究的方法学质量存在轻微担忧。大多数实验在背外侧前额叶皮质上使用主动 a-tDCS,平均电流密度为 0.1 mA/cm²。效果大小分析显示短期记忆(g = 0.58,95% CI = 0.27-0.88)和延迟回忆(g = 0.45,p < 0.001,95% CI = 0.23-0.67)有显著改善。双侧刺激与整体效果显著相关,但人们对出版偏见和研究异质性表示担忧。亚组分析显示,与延迟回忆(g = 0.45 和 0.44)相比,短期记忆的效应大小略大(渐进组和非渐进组分别为 g = 0.4 和 0.72)。结论:A-tDCS 对各种神经系统疾病的记忆都有小到中等的积极影响。然而,由于样本量小、统计功效低、以及分析数据可能存在出版偏见,现在认可 a-tDCS 作为标准神经心理干预的可靠辅助手段还为时过早。
在低强度TU的快速增长的领域中,使用“离线”经颅超声刺激(TUS)方案特别感兴趣。离线TU可以在刺激后长达几个小时调节神经活动,这表明诱导早期神经塑性。对人类和非人类灵长类动物的研究都显示了神经调节靶标和与之相关的区域的分布式网络的空间特定变化。这些变化表明兴奋性或抑制作用是所用方案与基础大脑区域和状态之间复杂相互作用的结果。了解如何通过离线诱导早期神经塑性,可以为在广泛的脑部疾病中影响晚期神经塑性和治疗应用开放途径。
Asanuma, C.、Thach, WT 和 Jones, EG (1983)。猴子丘脑腹侧区小脑末梢分布及其与其他传入末梢的关系。《脑研究评论》,5 (3),237 – 265。https://doi.org/10.1016/0165-0173(83)90015-2 Behrens, TEJ、Johansen-Berg, H.、Woolrich, MW、Smith, SM、Wheeler-Kingshott, C.、Boulby, PA、Barker, GJ、Sillery, EL、Sheehan, K.、Ciccarelli, O.、Thompson, AJ、Brady, JM 和 Matthews, PM (2003)。使用扩散成像对人类丘脑和皮质之间的连接进行非侵入性映射。 Nature Neuroscience,6 (7),750 – 757。https://doi.org/10.1038/nn1075 Benabid, AL, Pollak, P., Hoffmann, D., Gervason, C., Hommel, M., Perret, JE, de Rougemont, J., & Gao, DM (1991)。通过长期刺激丘脑腹侧中间核长期抑制震颤。The Lancet,337 (8738),403 – 406。https://doi.org/10. 1016/0140-6736(91)91175-T Chen, H., Hua, SE, Smith, MA, & Lenz, FA (2006)。人类小脑丘脑破坏对伸手适应性控制的影响。大脑皮层,16 (10),1462 – 1473。Chopra, A.、Klassen, BT 和 Stead, M. (2013)。深部脑刺激在治疗特发性震颤方面的当前临床应用。神经精神疾病和治疗,9,1859 – 1865。https://doi.org/10.2147/NDT.S32342 Crowell, AL、Ryapolova-Webb, ES、Ostrem, JL、Galifianakis, NB、Shimamoto, S.、Lim, DA 和 Starr, PA (2012)。运动障碍中感觉运动皮层振荡:皮层电图研究。 Brain , 135 (2), 615 – 630. https://doi.org/10.1093/brain/awr332 Cury, RG, Fraix, V., Castrioto, A., Perez Fernandez, M., Krack, P., Chabardes, S., Seigneuret, E., Benabid, A.-L., & Moro, E. (2017). 丘脑深部脑刺激治疗帕金森病震颤,基本