与217名大学生一起研究了咖啡因对算术表现的抽象影响。对算术SK I 1 1测试和血液动力学作用进行的双盲研究进行了巴driririririririririririririe含咖啡因或含咖啡因的000 000,180和250 mg)咖啡。进行了11轮算术测试;前四轮之前,随后在咖啡布雷克(Coffee Brea K)之后进行了7轮。每个回合由三个1分钟的算术测试组成。平均每个回合的算术SK I 1 1。同时测量了一轮后,心率和血压。在第4轮(n二217)在87.3土1.8/min的算术SK I 1 1的平均值。心率和平均血压为72.7士1.7beats/min/min和101.7土4.1mmhg。与无咖啡因组相比,咖啡因在100毫克处显着增强了咖啡后60至90分钟的算术SK I 1 1。咖啡饮用后的平均血压升高30至60分钟(咖啡因180 mg)。但是,算术错误和心率的比率不受影响。在250 mg,咖啡因而不是降低的算术SK I 1 1和血压。这些结果表明,含有咖啡因至180 mg)一含咖啡的饮用可以增强算术SK I 1 1,并调节血液动力学作用,大概是由于中枢神经系统和心血管系统的刺激而导致的。
对于许多获得的慢性神经系统疾病,康复仍然是最有前途的治疗方法。在过去的几十年中,随着对神经可塑性的不断发展,研究人员研究了各种治疗方式,这些方法挖掘了这些机制,以改善患者的结果。虽然已经采用了外围和中央刺激技术,但直到最近才有研究人员将这些技术的组合应用于改善运动结果,减少治疗持续时间或两者兼而有之。在这个特殊主题中,我们编辑了使用各种非侵入性刺激技术来理解和促进不同神经系统疾病的运动恢复的文章,包括中风,脊髓损伤,创伤性脑损伤,帕金森氏病和多发性硬化症。非侵入性周围刺激技术,包括功能性电刺激,感觉刺激,电肌肉刺激和经皮电刺激,是一些经典的神经调节型治疗师用于神经疗法的一些经典神经调节剂(1-4)。尽管这些技术已经显示出希望,但文献表明结果是高度可变的(5)。因此,迫在眉睫的需要开发能够始终产生良好结果的治疗方式。在这种尝试中,正在积极研究将周围刺激与中央刺激结合的康复干预措施。Stefan等人表明,可以通过体感传入和内在运动皮层电路的连接活性在人类运动皮层中诱发皮质输出电路的持久变化(6)。Liu等人提出,可能会组合中央干预和周围干预以形成闭环信息反馈,以增强大脑可塑性和神经途径的重塑,从而可能改善性能或结果(7)。在这方面使用的常见无创脑和脊髓刺激技术包括但不限于经颅磁刺激(TMS),经颅直流电流刺激(TDC),经皮脊柱
过去几十年来,神经科学家一直与集成电路社区合作,帮助他们开发用于分析和理解大脑的新工具。在此背景下,必须对小动物进行基础性的体内研究,而这需要小型化仪器进行长期研究[1]。多年来,科学家们一直推测脑电图 (EEG) 活动可能提供大脑和计算机之间的通信通道[2]。随着该领域的发展,电子界对功能性和小型化的需求也在上升。由于需要处理低幅度生物信号,因此设计放大器使这些信号与 ADC 等设备兼容以便在计算机上进一步分析非常重要。放大器必须具有特定要求,例如对生理信号进行选择性放大、抑制叠加的噪声和干扰信号、以及确保免受高电压和电流造成的损坏 [3]。微电子技术的最新发展带来了许多新应用,包括通过可穿戴和可植入设备采集生物信号[4-8]。例如,心电图 (ECG) 是最著名的应用之一,它包括采集生物信号以帮助医生诊断心脏疾病[6-10]。脑电图 (EEG) 是另一个广泛的应用,每年都有大量新著作发表[11-13]。神经记录将生物信号采集推向了新的水平,出现了涉及神经调节的新应用[14-16]。光遗传学就是这类应用,它是一个新兴的应用领域,从大脑的特定部分采集信号,同时,大脑的同一区域也可以受到光的刺激[17-20]。
摘要 直接刺激灵长类动物 V1 能否替代视觉刺激并模仿其感知效果?为了解决这个问题,我们开发了一种光学遗传工具包,使用宽视野钙成像“读取”神经群体反应,同时使用光遗传学将神经反应“写入”行为猕猴的 V1。我们专注于视觉掩蔽现象,其中共定位的中等亮度掩蔽显著降低了对暗淡目标的检测(Cornsweet 和 Pinsker,1965 年;Whittle 和 Swanston,1974 年)。使用我们的工具包,我们测试了 V1 光遗传刺激是否可以重现视觉掩蔽的感知掩蔽效应。我们发现,与视觉掩蔽类似,低功率光刺激可以显著降低视觉检测灵敏度,视觉和光遗传学引起的 V1 反应之间的亚线性相互作用可以解释这种感知效应,并且这些神经和行为效应具有空间选择性。我们的工具包和结果为进一步探索通过直接刺激感觉皮层来实现感知替代打开了大门。
摘要:动物如何体验大脑操纵?光遗传学使我们能够选择性地操纵和探究健康和疾病状态下大脑功能的神经回路。然而,目前尚不清楚小鼠除了诱发的生理功能外,是否还能感知任意的光遗传刺激。为了解决这个问题,小鼠被训练报告光遗传刺激作为获得奖励和避免惩罚的线索。研究发现,无论调节的大脑区域、奖励效应或谷氨酸能、GABA 能和多巴胺能细胞类型的刺激如何,小鼠都能感知光遗传操纵。我们将这种现象命名为视感受。利用视感受,小鼠可以学会根据激光频率执行两组不同的指令。重要的是,视感受可以通过激活或沉默单个细胞类型来发生。我们的研究结果表明,小鼠的大脑能够“监控”它们的自我活动,尽管是间接的,可能是通过内感受或作为一种辨别刺激,这开辟了一种将信息引入大脑和控制脑机接口的新方法。
摘要简介:深部脑刺激内部苍白球是治疗肌张力障碍的有效方法。然而,临床结果差异很大,即使是经过严格挑选的原发性肌张力障碍患者,也有高达 25% 的患者对治疗无反应。我们最近在一大批患者中证明,苍白球 DBS 治疗肌张力障碍的临床结果差异很大,很大程度上取决于苍白球区域内的确切位置和刺激量。在这里,我们基于这些见解测试了一种新颖的编程方法:我们首先通过汇总多中心收集的 80 多名患者的各个电极位置和激活组织体积来定义抗肌张力障碍效应的概率图。随后,我们修改了算法,使其能够根据预期的临床结果在计算机上测试从头患者的所有可能的刺激设置,从而可能预测出适合个别患者的最佳刺激参数。方法:在 BMBF 资助的研究框架内,将在随机对照交叉研究中测试基于计算机预测肌张力障碍患者最佳刺激参数的概念。临床疗效和主要终点的主要参数基于 4 周连续刺激后医生对两种干预措施(最佳临床设置和模型预测设置)的临床肌张力障碍评定量表所反映的肌张力障碍严重程度的盲法评分。主要终点定义为“使用模型预测设置成功治疗”(是或否)。如果使用模型预测设置时的运动症状等于或优于临床设置(容忍百分比绝对差异的 5%),则值为“是”。次要终点将包括生活质量指标、神经刺激系统的计算能耗和医生的编程时间。观点:我们设想,计算机引导的深部脑刺激编程可能会为肌张力障碍患者提供最佳刺激设置,而无需数月的编程负担。研究方案旨在评估哪种编程方法更有效地控制运动症状的严重程度并改善肌张力障碍患者的生活质量(最佳临床环境和模型预测环境)。试验注册于 2021 年 10 月 27 日在 ClinicalTrials.gov 上注册(NCT05097001)。关键词:深部脑刺激、肌张力障碍、影像引导的 DBS 编程
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
无线血管内神经刺激用毫米大小的磁电植入物Joshua C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. 2,Zhanghao Yu* 3,Fatima Alrashdan 3,Roberto Garcia 2Edwin Lai 1,Ben Avants 3,Scott Crosby 5,Michelle M. Felicella 6,Ariadna Robledo 2,Jeffrey D. Hartgerink 1,7,Sunil A. Sheth ** 8,Kaiyuan Yang ** 3,雅各布·T·罗宾逊(Jacob T. Robinson)美国德克萨斯州加尔维斯顿市德克萨斯大学医学分公司神经外科3号电气与计算机工程系,赖斯大学,美国德克萨斯州休斯敦市,美国4号应用物理学计划,赖斯大学,德克萨斯州休斯敦,美国5 NeuroMonitoring Associates,LLC 6. LLC 6年病理学系6.美国德克萨斯州休斯敦市Uthealth McGovern医学院9.美国德克萨斯州休斯顿市贝勒医学院神经科学系 *联合首先作者:J.C.C.,P.K.,P.K.,Z.Y。; **相应的作者:J.T.R,K.Y。S.A.S. 抽象植入的生物电子设备有可能治疗对传统具有抗性的疾病S.A.S.抽象植入的生物电子设备有可能治疗对传统
+ 放置脑导线 细导线(称为电极或导线)被放置到控制运动的大脑一侧或两侧区域。有些人在一次手术中在大脑两侧各放置一根导线。其他人则在第一根导线和第二根导线之间等待一小段时间。(例如,为了确保某些症状不会恶化,或者因为这是中心的规程。)在极少数情况下,例如一侧出现严重震颤,则仅在大脑一侧放置一根导线。手术当天早上,您的医生会要求您不要服用帕金森病或震颤药物。他们希望在手术过程中观察和评估您的症状,以便将脑导线放置到正确的位置。(有时,例如由于严重的迟缓或僵硬导致难以前往医院,医生会允许使用小剂量的药物。)在大多数中心,在手术前,医生会在您的头上放置一个小巧轻便的框架并进行脑部成像。这有助于他们将导线引导到大脑的正确位置。在手术过程中,患者通常会清醒一段时间。这样他们就可以描述治疗的好处或副作用,医生可以通过检查和脑部记录来监测患者的症状和反应。现在有些中心会在患者睡着时提供 DBS 治疗,使用脑部成像 (MRI) 来正确放置导线。
摘要:深部脑刺激是多种脑部疾病的成熟疗法,其潜在适应症正在迅速扩大。神经影像学通过改进解剖结构描绘以及最近脑连接组学的应用,推动了深部脑刺激领域的发展。这些疾病的旧有病变定位理论已经发展为较新的基于网络的“回路病”,通过使用先进的神经影像学技术(如扩散纤维束成像和 fMRI),可以直接评估体内这些脑回路。在这篇综述中,我们结合使用超高场 MR 成像和扩散纤维束成像来强调目前美国批准的深部脑刺激适应症的相关解剖结构:特发性震颤、帕金森病、耐药性癫痫、肌张力障碍和强迫症。我们还回顾了有关使用 fMRI 和扩散纤维束成像来了解深部脑刺激在这些疾病中的作用,以及它们在手术定位和设备编程中的潜在用途的文献。