我们感谢Claire Conzelmann和Simon Farbman出色的研究帮助以及Swapnika Rachapalli共享数据。We also thank our discussants David Atkin, Joaquin Blaum, Meredith Startz, Jose Vasquez, as well as Pol Antr à s, Adrien Bilal, Chris Boehm, Olivier Coibion, Elhanan Helpman, Gabriel Kreindler, Andrei Levchenko, Hugo Lhuillier, Ezra Oberfield, Andres Rodriguez-Clare, Esteban Rossi-Hansberg,Alireza Tahbaz-Salehi,明尼苏达州的观众,普林斯顿IES,斯坦福大学,密歇根大学,圣路易斯大学,沃里克,麦吉尔,麦吉尔,UQAM,UQAM,UT地缘政治会议有用的评论。所表达的观点是作者的观点,不一定反映了里士满联邦储备银行,理事会或国家经济研究局的观点。
HEC-RAS 模型需要边界条件数据来模拟河流和水道中的流动,这些边界条件为流量和水位过程线的形式,适用于提供或抽象具有流量的 2D 流动区域的边界、与河流系统直接相互作用的子流域的均匀侧向流、与河流系统间接相互作用的子流域的侧向流入过程线,以及从 2D 流动区域下游边界释放水的正常深度和速率曲线(Brunner 1995)。
土地所有者的参与使得该项目得以实现,这些土地所有者包括 Campbell Group、Giustina Resources、Weyerhaeuser Company、Willamette Industries、Longview Fiber Company、Port Blakely Tree Farms、Gary Deardorf、Roseburg Forest Products、Lone Rock Timber Company、Boise Cascade、Harris Logging Company、Stimson Lumber Company、Douglas County、美国内政部土地管理局和美国农业部森林服务局。Siuslaw 国家森林工作人员(特别是 George Bush)和俄勒冈州立大学的 Steve Tesch 博士与 ODF 工作人员密切合作,以最大限度地利用协调机会。由 Bob Bestcha 博士、Marv Pyles 博士和 Bill Dietrich 博士组成的专家团队审查了该项目的设计、分析和报告。Walt Megahan 博士、Fred Swanson 博士、Jonathan Fannin 博士、George Ice 博士、Roy Sidle 博士和 Dave Montgomery 博士也审查了该报告。 Emmor Nile、Ron Smith、Jodi Satalino、Jenny Walsh 和 Jerry Clinton 在数据收集、绘图、管理和分析的各个阶段发挥了重要作用。Mary Gorton 设计了封面。Kris Cody、Sharon Martin、Nada Austin、Cassandra Webber、Lorna Lee 和 Peg Foster 提供了文字处理支持和编辑评论。俄勒冈州环境质量部、美国环境保护署、俄勒冈州林业部州立森林计划和俄勒冈州森林资源研究所为森林实践风暴研究预算提供了补充预算支持。
本报告概述了国家气象局宣布的Derecho风暴,该风暴于6月13日至14日,2022年6月13日至14日在俄亥俄州哥伦布地区,随后于6月14日至15日举行的载荷脱落活动。在暴风雨结束后,哥伦布和俄亥俄州东部有记录和近历史的高温。创纪录的高温将哥伦布地区的功率需求提高到高于正常水平。在美国电力(AEP)区域,Derecho风暴流离失所,并导致许多69 kV传输线和变电站,许多138 kV线和变电站以及一条345 kV的传输线。由于哥伦布地区周围的强迫传输发生故障以及由于暴风雨后炎热和潮湿的条件而增加的需求,因此AEP在其余的当地传输设施上经历了比正常负载重的重量。在可能的情况下,AEP和PJM利用传输系统重新配置并重新划分生成,以减少实际的过载和偶然的过载。最终,为了减轻系统问题,PJM于6月14日实施了100兆瓦的需求响应(非公司负载),哥伦布都会区的500兆瓦AEP负载,以及6月15日的450兆瓦。本报告确定了涉及此事件的两个观察结果。第一个是AEP和PJM之间的活动的密切协调,并建议在行动后进行联合。第二个观察涉及与植被位移有关的暴风雨活动。该观察结果有四个相关的暴风雨建议,这些建议将有助于减少植被影响。
我们正在优先考虑频率比预期的更频繁的风暴溢出。其中一些由我们2020 - 2025年的高优先级计划涵盖,该计划针对11个最高排放的风暴溢出,并以特定的投资为目标。除此之外,还需要各种解决方案来解决导致风暴溢出的多个方面问题。我们的风暴溢流行动计划中的解决方案包括创建可持续的排水,以减少雨水进入下水道,而允许其自然排出土壤,进行操作改进以及附近的下水道的定期喷射,以使其避免堵塞和碎屑堆积。结合使用,这样的动作将有助于保持下水道自由流动,减少过载和暴风雨溢流的可能性。
2019年冠状病毒病(COVID-19)大流行已成为全球危机,比以前任何其他传染病更具毁灭性。它在身体和精神上都影响了全球人口的一定比例,并破坏了企业和社会。当前的证据表明,免疫病理学可能是导致199号发病机理的原因,包括淋巴细胞减少症,中性粒细胞,单核细胞和巨噬细胞失调,I型干扰素(IFN-I)反应减少或延迟的降低或延迟,抗体依赖性依赖性增强,尤其是巨细胞菌(Cytokine Storm)。CS的特征是一系列促炎细胞因子的多生产,并且与预后不良密切相关。这些过度分泌的亲炎细胞因子通过其受体在免疫和组织细胞上引发不同的炎症信号通路,导致复杂的医学症状,包括发烧,毛细血管泄漏综合征,毛细血管泄漏综合征,血管内凝血,急性呼吸遇险综合症,多层抗体失败,以及最终导致严重的死亡。因此,了解CS为COVID-19制定更有效的治疗策略的启动和信号通路在临床上很重要。在此,我们讨论了Covid-19的免疫病理学特征的最新发展,并关注CS,包括所涉及的不同细胞因子的当前研究状态。我们还讨论针对这些细胞因子或相关信号途径的诱导,功能,下游信号传导以及现有和潜在的干预措施。我们认为,对Covid-19的CS的全面了解将有助于制定更好的策略,以有效地控制该疾病中的免疫病理学以及其他感染性和炎症性疾病。
摘要 自“沙漠风暴行动”以来,空军的飞机数量、机组人员数量和总体实力均有所减少。军种内部选择和外部影响减少了替换机身的生产,并且可能继续减少未来采购的飞机数量(F-22A、F-35A、KC-46A 和 LRS-B)。尽管美国空军的作战范围横跨空中、太空和网络空间,但其主要使用空中力量来追求国家目标。虽然规模缩小并不一定是坏事,但飞机和机组人员的进一步减少可能会对部队的文化和能力产生一定影响。预测和了解这些影响对于未来的部队规划至关重要,这样不仅可以避免出现一支空心部队,还可以避免一支对其在保卫国家中的作用感到困惑的部队。虽然未来的兵力预测充满不确定性,但本论文试图通过额定兵力结构的预期变化,对 2030 年的空军进行展望。假设相对简单:2010 年的兵力结构小于 1990 年;2030 年的兵力结构将更小。在很大程度上,问题是这意味着什么?虽然未来额定兵力规模可能会减少,但领导层可以通过早期意识和主动参与来减轻对文化的不利影响。为此,本论文将确定可能与预期的飞机和机组人员减少相关的潜在问题,以引发讨论,从而提前意识到这个问题,并希望能够考虑这个问题。
信息和通信技术使世界联系日益紧密,信息几乎可以在眨眼间毫不费力地在全球传播。我们每天在屏幕上看到的内容越来越多地由推荐系统决定,这些系统旨在最大限度地提高参与度,有时更倾向于创造参与度而不是真相。有时,这种信息流动受到社交机器人的影响。信息的传播通常受到人们如何参与信息的影响,包括分享、评论、重新制作信息以及在数字媒体平台以及社交媒体和传统媒体之间传播信息。再加上生成式人工智能创造合成内容的能力,很可能会导致一场虚假信息风暴。现在是采取行动应对这些风险的时候了。