抽象的肠道微生物组在怀孕期间发生了巨大变化,并在哺乳动物中的代谢状态和生殖内分泌学中起着重要作用。然而,研究功能性菌群和代谢产物以改善生殖性能并了解宿主 - 微生物群的相互作用仍然是艰巨的任务。本研究旨在揭示改善生殖性能的主要菌株和代谢产物。我们分析了较高的中国猪繁殖梅山(MS)母猪的粪便菌群组成和代谢状态和较低的产量,但在第28天和100天的妊娠期和100天,杂种猪饲养的兰德拉斯×约克郡(L×y)母猪的杂种饲养的杂种。结果表明,MS母猪的垃圾大小和类固醇激素水平较高,但粪便中的短链脂肪酸水平较低。粪便代谢组学分析表明,与早期和晚期的L×Y SOW相比,MS SOW的代谢状态不同,在早期和晚期妊娠中,它们富含苯基丙糖苷生物合成,胆汁分泌,类固醇激素生物合成和植物二级代谢物生物合成。此外,16S rDNA和内部转录的间隔测序表明,MS母猪显示了微生物群的不同结构,并且与L×Y SOW相比,细菌α-多样性增加但非差异真菌α多样性。我们的发现表明生殖性能与肠道微生物组之间有显着的相关性,并提供了微生物和代谢的观点,以改善母猪的垃圾大小和类固醇激素。此外,我们发现垃圾尺寸和细菌包括Sphaerochaeta,Solibacillus,Oscillospira,Escherichia – Shigella,Prevotellaceae_ucg-001,DGA-111 _ Gut_group和细菌,以及包括PeniCillium,fusus and Mickus ander-auccuus,fusrosiar,fusrosiar,Mickeriaia,Mickeriary,包括与早期怀孕的重要代谢产物的关系。
金黄色葡萄球菌是一种革兰氏阳性病原体,通常与牛乳腺炎有关,牛乳腺炎是一种影响奶牛乳房的传染病。本研究的目的是评估甲氧西林,阿莫西林和氨苄青霉素的抗菌功效,用于检测与牛乳杆菌抗甲氧西林金黄色葡萄球菌(MRSA)菌株的抗菌功效。从方法论上讲,它是在使用板盘扩散法(Kirby-Bauer)进行抗菌活性的,并在2 µg和10 µg下使用阿莫西林和氨苄青霉素,也遵循临床和实验室标准研究所的建议。用于检测耐药性甲氧西林菌株,使用1 µg的阿沙西林,三30 µg头孢辛丁蛋白。该研究是针对正在研究的50个细菌菌株进行的,这些细菌被分离和鉴定。应用治疗表现出了非常显着的作用(p <0.05)。此外,观察到分别观察到2 µg 2 µg阿莫西林和氨苄青霉素的50%和60%的电阻。此外,分别观察到60%和68%至10μg的阿莫西林和氨苄青霉素的耐药性,表明金黄色葡萄球菌正在开发赋予抗菌耐药性的机制。为了进一步研究这一点,使用1 µg阿沙西林盘和30 µg头孢辛蛋白进行了抗菌活性,表明分离株的36%和32%分别对这些药物具有抗性。在表型上,将32%(n = 16)鉴定为金黄色葡萄球菌(MRSA),表明对所有测试的β-乳酰胺的抗性。
摘要金黄色葡萄球菌菌株与特应性皮炎(AD)表现出不同的关联,但是基于致病性的遗传决定因素尚未充分表征。为了揭示AD患者和健康个体(HE)的金黄色葡萄球菌菌株之间的遗传差异,我们开发并采用了随机的森林分类器来识别负责其表型变异的潜在标记基因。分类器能够有效地将菌株与AD和HE区分开。我们还发现了某些标记基因和噬菌体功能之间的牢固联系,噬菌体霍林出现为最关键的分化因子。对金黄色葡萄球菌基因含量的进一步研究强调了预言在推动与AD菌株之间分化的遗传多样性和功能意义。HE组表现出更大的基因含量多样性,在很大程度上受其预言的影响。虽然AD和他普遍容纳预言的菌株,但HE组中的菌株在应变水平上却明显更高。此外,尽管HE组中的预言表现出更高的差异功能的富集,但AD组在其预言中表现出显着的毒力因子的富集,强调了预言对AD相关菌株的发病机理的重要贡献。总体而言,预言显着塑造了金黄色葡萄球菌菌株的遗传和功能谱,阐明了其致病潜力,并阐明了AD和HE环境的表型变化背后的机制。
在沙门氏菌中多药耐药性的出现,引起食物传播感染,是一个重大问题。在沙门氏菌中有超过2,600种血清射手,至关重要的是为每种血清的特定溶液确定特定溶液。噬菌体疗法是另一种治疗选择。在这项研究中,VB_SALP_792噬菌体是从污水中获得的,在13个经过测试的临床S.肠分离株中,有8个形成斑块。透射电子显微镜(TEM)检查显示出T7样形式。噬菌体的特征是食物来源中其稳定性,生命周期,抗生素和裂解能力。噬菌体在整个温度(-20至70°C),pH值(3-11)以及氯仿和乙醚中保持稳定。它还在0.0001至100的MOI范围内表现出裂解活性。生命周期表明,在3分钟内附着在宿主上的噬菌体中有95%,然后是5分钟的潜在时期,导致50 PFU/细胞爆发的大小。VB_SALP_792噬菌体基因组的DSDNA长度为37,281 bp,GC含量为51%。有42个编码序列(CD),有24个具有推定功能,没有抗性或毒力相关的基因。VB_SALP_792噬菌体显着降低了已建立的生物膜和蛋清中的细菌载荷。Thus, vB_SalP_792 phage can serve as an effective biocontrol agent for preventing Salmonella infections in food, and its potent lytic activity against the clinical isolates of S. enterica , sets out vB_SalP_792 phage as a successful candidate for future in vivo studies and therapeutical application against drug- resistant Salmonella infections.
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
RCE11 low 6 +++ M - RCE20 low 6 +++ M - RCE26 low 6 +++ M + RCE29 low 6 +++ M nd RCE32 low 6 +++ M + RCE45 low 6 ++ H nd RCE90 low 6 +++ L nd RCE91 low 6 +++ L - RCE99 low 6 +++ M - RCE102 low 6 +++ L + RCE120 low 6 +++ L ND RCE122低6+M ND RCE123低6 +++ M ND RCE132低6 +++ M ND RCE134低6 ++ L ND RCE141低6 ++ M ND RCE142低6 ++ l+RCE143 LOW 6+RCE143 LOW 6+rCE 143 LOW 6+RCE 14+6+6+6+6+6+h 6+6 RCE149低6+L ND RCE 150低6 ++ m nd RCE 152低6 ++ M ND RCE 153低6 +++ M ND RCE156低6 ++++ M nd RCE167低6 +++ H -RCE194低6 ++++++ l nd rce205 Low 6+l nd rce205低6+rce205低6 +++ m nd
1微生物学和生物医学研究所ACoruña(Inibic),大学医院ACoruña,Coruña,Coruña,西班牙2分子类型参考实验室,并检测Andalusia(Pyrasoa)的抗菌耐药机制。 div>微生物学和传染病的临床管理部门,塞维利亚Virgen Macarena大学医院。 div>西班牙塞维利亚大学塞维利亚生物医学研究所(IBIS),西班牙塞维利亚大学3研究与研究实验室,研究与抗生素和感染的研究实验室和研究,与卫生援助有关马洛卡(Mallorca
摘要:葡萄球菌Pettenkoferi是最近描述的人类疾病中识别的凝固酶阴性葡萄球菌,尤其是在糖尿病患者的足球溃疡感染中。迄今为止,其致病性保持不足。在这项研究中,全基因组分析是在从血液和糖尿病足感染中分离出的29股PETTENKOFERI临床菌株的收集,内容涉及其系统发育关系以及对其抵抗组和雌激素的全面分析。通过它们形成生物膜,生长动力学和体内斑马鱼胚胎感染模型的能力来探索他们的毒力。我们的结果确定了两个不同的进化枝(I和II)和两个子甲基(I-A和I-B),具有显着的基因组差异。所有菌株的细菌生长都缓慢。注意到了生物膜形成的三个前纤维,其中89.7%的分离株能够产生生物膜并含有高含量的生物膜编码基因。在斑马鱼模型中也观察到了两种毒力,无论菌株的起源或生物膜效果如何。因此,这项研究带来了Pettenkoferi致病性的新见解。
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
小鼠胚胎干细胞或受精卵中的基因破坏是鉴定体内基因功能的传统遗传学方法。然而,由于不同的基因破坏策略使用不同的机制来破坏基因,这些策略可能导致所得小鼠模型出现不同的表型。为了确定不同的基因破坏策略是否会影响所得突变小鼠的表型,我们对通过三种常用策略(确定性敲除 (KO) 优先和 CRISPR/Cas9)产生的 Rhbdf1 小鼠突变株进行了表征。我们发现 Rhbdf1 对不同的 KO 策略的反应不同,例如,通过跳过外显子并重新启动翻译来潜在地产生获得功能的等位基因,而不是预期的无效或严重的次等位基因。我们的分析还显示,使用 KO 优先策略产生的小鼠中至少有 4% 表现出相互冲突的表型,这表明外显子跳过是整个基因组中普遍存在的现象。此外,我们的研究强调,至少 35% 的小鼠和 45% 的人类蛋白质编码基因可能易于发生靶向 KO 优先和 CRISPR/Cas9 介导的意外翻译。我们的研究结果对基因组编辑在基础研究和临床实践中的应用具有重要意义。简介小鼠在基因上与人类密切相关,因此选择小鼠作为模型系统来破译约 20,000 个蛋白质编码基因的功能,以深入了解人类生物学和疾病。对于大规模小鼠诱变工作,通过小鼠胚胎干 (ES) 细胞中的同源重组进行基因靶向是一种有效且通用的技术。基因靶向涉及确定性无效设计(删除目标基因的整个基因组序列)或靶向敲除 (KO) 优先设计,这提供了多种优势,包括基因破坏和报告标记突变,此外,还允许以组织特异性或时间方式分析基因功能。最近,使用 CRISPR/Cas9 直接破坏受精卵中的基因已经取代了确定性无效和 KO-first 策略。为了确定不同的基因靶向策略是否会影响纯合突变小鼠的表型,我们系统地表征了由这三种 KO 策略(确定性无效、靶向 KO-first 和 CRISPR/Cas9)产生的 Rhbdf1 突变小鼠。Rhbdf1 基因编码 RHBDF1,并被认为在生长发育 [1]、炎症 [2] 和癌症 [3-5] 中起关键作用。确定性无效和靶向 KO-first 策略是强大的高通量方法,可用于 ES 细胞中的大规模基因靶向,以研究数千种哺乳动物蛋白质编码基因,从而更好地了解人类生物学和疾病 [6-8]。在使用确定性无效策略时,基于细菌人工染色体 (BAC) 的打靶载体替换靶基因的整个基因组序列 (补充图 1a),从而产生无效等位基因。相比之下,靶向 KO-first 方法 [9, 10] 是一种包括可根据所需结果选择的替代步骤的策略,具有高度的通用性,