该博士职位是对EISCAT 3D基础设施项目和相关研究成果的战略支持的一部分。这里提供了两组项目:第一个链是基于对所谓的等离子体线的研究,这些信号可以通过不一致的散射技术来衡量,这是与“微型”等离子体物理学有关的主题。第二链涉及电离层与热层的耦合,并属于“宏”等离子体物理的领域。实际上,这两个链的项目都可以观察,基于模型或两者的组合。在项目期间,学生将有机会旅行和参观国外的合作者。
在遗传诊断和生物化学领域等。使用光合交联的核酸操纵具有以下特征:1)可以在多种条件下使用它,而无需限制pH,温度,盐强度等。2)不需要添加试剂,而3)3)它可以轻松地通过光辐射的时间和能量来控制反应。我们已经报道了各种照片的人造核酸,以及代表性的光杂交链链球菌(CNV K)(CNV K),可以通过辅助DNA或RNA链中的吡啶胺或胞嘧啶等嘧啶基碱(以366的366 Irladions in of thymine或rna strands中的)进行光子交联。此外,可以通过312 nm的照射诱导光电反应,并且可以使用光可逆的操作。与以前已知的牛cor烯和香豆素相比,CNV K及其改进的光交联CNV D具有很高的光反应性,并且已经在市场上。因此,在本演讲中,我打算介绍此超快照片的开发 -
4。结论最后,可以得出以下结论:•“气质”一词的真正含义是(基因型),它主要由两条“ Al-Merratine”的盘绕链组成,通常是Ibn Sina在800年前所设想的。•DNA一词的含义的起源首先出现在阿拉伯语的文化和科学遗产中,在阿拉伯语中被称为“ Al-Merrataine”,意思是“长,精细,盘绕的链”和其他同义词。•在这篇评论的上下文中,我们将单词(al-Merratine)用作双重链,它完全与DNA的概念相匹配,DNA的概念通常不作为单个链而而是将其作为一对紧密地保持在一起。(附录1,图1)
图1。DNA结构的低能光电离已经研究了3。(a)由腺嘌呤 - 胸腺嘧啶和/或鸟嘌呤胞嘧啶碱基对组成的双链体。(b)G-四链体,其特征在于鸟嘌呤四龙的垂直堆叠(黄色);它们是由单个DNA链(单分子)的折叠,两个单链(双分子)的缔合或在含有Na +或K +阳离子(蓝色领域)的水溶液中四个单链(四分子)的关联而形成的。磷酸脱氧核糖主链以紫罗兰色指示。为简单性,在(b)中省略了环的核苷酸酶,连接鸟嘌呤四核和结束组。关于自由基阳离子的去质子化,在第3.5节中讨论了红色,蓝色和绿色质子。
摘要:肽核酸(PNA,具有肽骨架而非磷酸核糖骨架的核酸类似物)已成为反基因或反义治疗、剪接调节剂或基因编辑中的有前途的化学药剂。与 DNA 或 RNA 药剂相比,它们的主要优点是生化稳定性和整个骨架上没有负电荷,导致与它们杂交的链的静电相互作用可以忽略不计。因此,PNA 链与 DNA 或 RNA 链的杂交会导致更高的结合能和熔化温度。然而,缺乏天然转运体需要形成含 PNA 的嵌合体或制定纳米特定细胞递送方法。在这里,我们着手探索在诊断应用中使用基于 PNA 的成像剂所取得的进展,并重点介绍选定的发展和挑战。■ 简介
我们将如何做到在该地区创建健康垫,必须将三个水平和五个垂直线编织在一起。这些链是合作的工作流,它将跨越孤岛,并使思想和才能的协作发展。,我们将通过跨学科团队的支持来编织这一垫子,以成员国的身份和行动,重点关注该地区国家和地区的家庭,社区和社会的独特背景。通过与有组织的团体,网络,联盟和其他实体互动,将加强与国家和地区级别的非健康部门合作的角色。合作中心将在扩大知识库和在关键技术领域提供专业知识方面发挥关键作用。
基于染色质的表观遗传记忆依赖于父母组蛋白H3 - H4四聚体的准确分布到新复制的DNA链。mcm2,复制酶的亚基和DPB3/4,DNA聚体酶ε的亚基,分别控制着父母组蛋白H3 - H4沉积到滞后和领先链中。但是,它们对表观遗传的贡献仍然存在争议。在这里,使用裂变酵母异染色质遗传系统消除了引发途径的干扰,我们表明MCM2组蛋白结合突变会严重破坏异染色质的遗传,而DPB3/4中的突变仅导致中度缺陷。令人惊讶的是,MCM2和DPB3/4的同时突变稳定异染色质遗传。ESPAN(蛋白质相关的新生DNA的富集和抑制)分析证实了在亲本组蛋白H3 - H4分离中的MCM2和DPB3/4功能的保存,其合并缺失显示出与单个单独突变相比,它们更对称性H3 - H4的对称分布。此外,组蛋白伴侣伴侣调节父母组蛋白转移到链中,并与MCM2和DPB3/4合作,以维持亲本组蛋白H3 - H4 - H4密度和忠实的异染色质遗传。这些结果强调了父母组蛋白的符号分布及其在DNA复制过程中父母组蛋白伴侣伴侣的表观遗传遗传和揭示出独特特性的符号分布的重要性。
I。与合成和测序技术的发展一起,更多的研究组表明了体外DNA储存的潜力。参见例如[1],[2],[4],[5],[7],[13],[22],[23]。典型的DNA存储系统由三个组成部分组成:(1)包含编码数据的链的合成。在当前技术人员中,每个链都有数百万份,这些链的长度通常限制为250-300个核苷酸。 (2)存储合成DNA链的存储容器; (3)读取链的DNA测序仪,其中读取了测序计算机的输出序列。这种新颖的技术具有几种与数字同行根本不同的属性,而最突出的技术是错误的副本以无序的方式存储在存储容器中(请参见例如[12])。克服这一挑战的最常见解决方案是使用作为链的一部分存储的索引。相对于所有其他链,将每条链带有一些指示链的位置的核苷酸。这些索引通常使用错误校正代码(ECC)[2],[4],[11],[13],[22]保护这些指数。输入信息的检索通常由以下三个步骤完成。第一步是将所有读取分为簇中,以使每个群集的读取都是相同信息链的所有嘈杂副本。我们的观点第二步在每个群集上应用了重建算法,以检索原始输入链的近似值。在最后一步中,用于纠正其余错误并检索用户的信息。虽然以前的作品独立解决了每个步骤(例如,请参见[1],[2],[4],[13],[20],[22]),这项工作旨在将它们全部解决。这是通过限制DNA存储系统中的存储消息来完成的,因此对于任何两个输入消息,所有可能的输出的集合将是相互脱节的。我们称此代码为DNA校正代码。