保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
摘要 增材制造 (AM) 正迅速成为汽车、航空航天、医疗等许多行业制造零部件的主导技术。具有更高沉积速率的电弧增材制造 (WAAM) 技术正在成为 AM 中的突出技术。基于线材的增材制造需要高热量输入来熔化线材进行沉积。当组件建立在多层上时,它涉及各种加热和冷却循环,从而导致不均匀的热负荷。由于重复的循环,残余应力会滞留在零件内部并导致各种缺陷,如裂纹、变形、翘曲、部件的生命周期缩短等。需要降低残余应力以最大限度地减少缺陷。本文讨论了预热和锤击压缩载荷等多种技术对最大限度地减少残余应力的影响。预热基材(沉积发生在其上)将降低热梯度,从而降低残余应力。由于残余拉应力是在基于线材的熔覆过程中产生的,而该应力可通过施加压缩载荷来消除,因此,我们内部开发了一种用于施加压缩残余应力的气动装置,以尽量减少残余拉应力。在这项工作中,我们准备了四种不同的样品;1) 沉积状态(未进行预热和锤击),2) 沉积后进行锤击,3) 预热后沉积,4) 预热后沉积后进行锤击,以通过 X 射线衍射法测量残余应力。研究发现,预热和锤击单独可尽量减少残余应力,而综合效果则表明残余拉应力大大降低。
1 美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
这里的r和l分别是圆柱体的半径和长度,η是流体的粘度,κ是培养基的渗透性。darcy从Poiseuille的定律开始对渗透率进行解释,该定律从Poiseuille定律开始,该定律适用于空缸,并预测Q POIS =πr4 p/(8ηl)。他认为,在介质中,只有沿着非交流薄通道,半径r c r的每个流量才有可能,并且可以将渗透率鉴定为κ〜N CH r 2 c,n ch n CH,每个单位表面的开放通道数量[2] [2]。这种经验定律不仅适用于沙子中流动的水,还适用于嵌入多孔培养基中的所有牛顿流体[3](即具有强烈的异质性的复杂结构,例如土壤,岩石或沙子[4-7])。确实,对于这种流体,n Ch是压力无关的,因为在每个通道中,对于任意的弱压力而言发生了。对于另一类的流体,例如悬浮液[8],凝胶[9],重油[10],浆液或水泥[11],这不是这种情况。对于这些流体,随着施加的压力p而生长。实验[13,14]和数值模拟[15-17]表明,Darcy定律确实被修改:低于阈值压力P 0没有流量,而在其上方,该流量随着p非线性生长。观察到三个流动状态[18,19]:i)最初,流动在p -p 0中线性生长,渗透率很小,〜1 /r 2; ii)对于较大的压力,流量为(p-p 0)β
制造应变和随后的残余应力是薄壁结构行为的关键因素,因为它们会引起屈曲、翘曲和失效。本文通过研究使用定向能量沉积的薄壁结构的增材制造,提出了对这些特征进行实验和数值分析的综合方法。使用红外和光学摄像机在整个部件和整个过程中识别制造过程中的温度和平面位移场的现场测量值。与大多数现有方法不同,本文的创新之处在于无需停止制造即可确定位移场,这大大简化了对过程的监控。此外,还开发了该过程的数值建模来研究残余应力的形成。所提出方法的创新之处在于通过将热问题和机械问题解耦,实现了相当短的计算时间,这对于参数研究来说很有趣。结果是相关的,因为计算出的温度和位移场与现场测量值非常吻合。补充屈曲分析还表明,该模型能够预测何时由于过度偏离计划挠度而必须停止制造。因此,所提出的模型可用作选择给定部件的合适工艺参数的工具。
心理健康对大学的关注日益加剧,因为从青春期到成年的过渡通常与心理健康问题的发作相吻合(Acharya等,2018)。这个时期特别容易受到抑郁症,焦虑和物质使用障碍等疾病的发展(Blanco等,2008; Liu等,2019; Reddy等,2018)。的研究表明,与非大学学生和普通人群相比,大学生的精神病患病率明显更高(Auerbach等人,2016; Ibrahim等,2013),实际上,估计,几乎一半的大学生与心理健康有关,与抑郁症和焦虑相关,例如抑郁症和焦虑(例如,rege and rege ege et al an ege et al an an ege et al an and rege and and and and and and and and and and and and an ege and and and。学生之间负面情绪状态的高发病率与几个因素有关,包括学术压力,与家庭相关的压力,关系挑战,职业不确定性以及不健康的生活方式习惯,例如体育锻炼不足,饮食不足和睡眠不足的睡眠模式不足Kadapatti和Vijayalaxmi,2012年)。
为什么我们的技术很重要?地球能源计划面临着一个关键的挑战:对地下压力状态的有限和不可靠的理解。这种不确定性导致了几种严重的风险:诱发的地震性意外的断裂和断裂模式井眼不稳定性这些问题迫使操作员做出保守的操作决策,例如减少深度地热能,碳捕获和储存(CCS)以及地下氢气(CCS)等项目的注射压力。虽然这些措施旨在减轻风险,但它们导致水库的未利用不足,从而影响盈利能力和效率。对于核废物存储,对地下压力的准确评估对于确保存储地点的结构完整性并防止污染风险至关重要。与传统方法不同的是,我们的解决方案的好处,insitumetrix提供了基板中所有应力成分的精确测量,而无需裂缝。这些组件包括:
原子的精确排列和性质驱动凝结物质中的电子相变。为了探索这种微弱的联系,我们开发了一种在低温温度下工作的真正双轴机械变形装置,与X射线衍射和运输测量值兼容,非常适合分层样品。在这里我们表明,TBTE 3的轻微变形对其电荷密度波(CDW)具有显着影响,并具有从C到A / C参数驱动的方向转变,A = C附近的微小的同存区域,并且没有空间组的变化。CDW过渡温度t c在a = c 1 r的线性依赖性中,而间隙从共存区域中饱和。这种行为在紧密结合的模型中得到很好的解释。我们的结果质疑RTE 3系统中的间隙和T C之间的关系。此方法为研究中共存或竞争的电子订单的研究开辟了新的途径。
最近已广泛描述了心力衰竭,心力衰竭,心房颤动和其他心血管疾病的发作和表现。在特定的氧化途径和抗氧化剂产生之间的正常平衡和稳态。增加活性氧,例如烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶,超氧化物歧化酶(SOD),谷胱甘肽过氧化物酶(GPX),脊髓过氧化物酶和其他ROS,因此产生了抗氧化能力和抗氧化能力及其降低的特性。障碍ROS/抗氧化剂平衡的影响是了解心血管疾病的发作,进展和表现中的病理生理影响的关键。在这篇综述中,我们将讨论ROS产生升高在心力衰竭和心房颤动中的病理生理效应,并描述在氧化应激状态升高的情况下,还描述了治疗方面和选择。