图1高粱双色转移酶4A(SBSOT4A)的部分氨基酸序列比对,具有功能表征或注释的植物硫代转移酶(SOTS)。atsot10(At2g14920的产品,拟南芥的拟南芥),Atsot12(来自AT2G03760,拟南芥拟南芥),Atsot15(At5g07010,拟南芥Thaliana),Thaliana),Thaliana,ATSOT18(AT1G74090909090,Thaliana,FB3) FC3ST和FC4ST来自Flaveria Chlorifolia,BNST1,BNST2和BNST3(AF000305,AF000306和AF000307的各自的产品,Brassica Napus napus),Atsot19,Atsot2020202021和Atsot21(来自AT3G50620,AT3G50620,AT2G15730,AT2G15730,AT2G15730,AT2G15730,以及AT4G34,以及AT2G15730和AT4G34。在对齐的顶部指示了四个已知的保守区域(I - IV)。与膜相关的SOT保守的残基以灰色阴影。3 0-磷酸腺苷-5 0-磷脂硫酸盐(PAPS)结合残基用绿色箭头表示,催化残基以紫色突出显示。
在被子植物中,斯特龙酮受体是α /β水解酶dwarf14(d14),在strigolactone结合后,经历了构象变化,触发了strigolactone依赖性反应,以及strigolactones。strigolactone信号传导涉及在strigolactone结合的D14,E3-泛素li gase scf max2和转录核心代理SMXL6/7/8之间形成复合物,这些corepressors smxl6/7/8被泛素化和降级。strigolactone也破坏了D14受体的稳定性。当前模型提出D14通过SCF MAX2和蛋白酶体降解在SMXLS泛素化后发生D14降解。使用荧光和发光测定在表达与绿色荧光蛋白或荧光素酶的D14的转基因线上,我们表明,strigolactone诱导的D14降解也可能独立于SCF MAX2和/或SMXL6/7/8,通过蛋白酶体依赖性依赖性机制发生。此外,斯特龙酮水解对于触发D14或SMXL7降解不是必不可少的。还检查了突变体D14蛋白的活性,预测对斯特龙酮SIG nalling的功能是非功能的,并使用差异扫描荧光法研究了它们在体外结合Strigolactone的能力。最后,我们发现在某些条件下,D14降解的效率与SMXL7降解的效率不符。这些发现表明,与以前预期的有关D14降解的更复杂的调节机制,并提供了拟南芥信号传导动力学的新见解。
有丝分裂原激活的蛋白激酶(MAPK)级联信号系统在整个真核生物的演化过程中相对保守,并参与了生长,发育和代谢的调节。在这项研究中,矮番茄植物被用作研究材料。首先,通过定量RT-PCR在野生型植物中测量SLMAPK6的组织特异性表达。结果表明,Slmapk6在茎,叶和花的组织中高度表达,但在根,萼片和水果的组织中以低水平表达。第二,Slmapk6-敲除线CRISPR-3和CRISPR-7是通过CRISPR-CAS9技术和农业介导的转换获得的。与野生型相比,突变线CRISPR-3和CRISPR-7显示出显着的表型特征,例如腋窝芽和真实叶子数量增加,茎增厚和更长的传单。In addition, to explore the molecular mechanism by which MAPK regulates axillary bud growth, we also showed that SlMAPK6 positively regulates the strigolactone synthesis genes SlCCD7 and SlCCD8 and the gibberellin (GA) synthesis genes GA20ox3 and GA3ox1 and negatively regulates the axillary bud development-related genes Ls , BL and BRC1b / TCP8和GA合成抑制基因GAI。因此,Slmapk6似乎调节了strigolactone和ga的合成,以诱导番茄腋芽的生长和发育。
<巫婆(Striga asiatica)的划分。 杂草科学,32,494 - 497。https:// doi.org/10.1017/s0043174500059403 Brun,G。,Braem,L.,L.,Thhoiron,s。 在寄生植物中看到了发芽:斯特里戈酮研究可以期望哪些见解? 实验植物学杂志,69,2265 - 2280。https://doi.org/10.1093/jxb/ Erx472 Brun,G。,Spallek,T.,Simier,P。,&Delavault,P。(2021)。 种子发芽和寄生杂草中的haustorianiegoeser的分子参与者。 植物物理学,185,1270 - 1281。https://doi.org/10.1093/plphys/kiaa041 Brun,G.,Thoiron,S.,Braem,L.,Pouvreau,Pouvreau,J.-B. Simier,P.,Gevaert,K.,Goormachtig,S。,&Delavault,P。(2019年)。 CYP707AS是雪人场景和2017年第10届年度签名路径的最常用。 看到Escobedia Grdyflora(OrganChaceae)的发芽和植物发育:强制性半脊髓炎的证据。 Acta Biol Ogica Colombianana,20,133 - 140。https://doi.org/10.15446/abc.v20n3.43776 Cavar,S.,S.,Zwanburg,B。,&Tarkowski,P。(2015)。 互动:根际的出现,结构和生物学活性。<巫婆(Striga asiatica)的划分。 杂草科学,32,494 - 497。https:// doi.org/10.1017/s0043174500059403 Brun,G。,Braem,L.,L.,Thhoiron,s。 在寄生植物中看到了发芽:斯特里戈酮研究可以期望哪些见解? 实验植物学杂志,69,2265 - 2280。https://doi.org/10.1093/jxb/ Erx472 Brun,G。,Spallek,T.,Simier,P。,&Delavault,P。(2021)。 种子发芽和寄生杂草中的haustorianiegoeser的分子参与者。 植物物理学,185,1270 - 1281。https://doi.org/10.1093/plphys/kiaa041 Brun,G.,Thoiron,S.,Braem,L.,Pouvreau,Pouvreau,J.-B. Simier,P.,Gevaert,K.,Goormachtig,S。,&Delavault,P。(2019年)。 CYP707AS是雪人场景和2017年第10届年度签名路径的最常用。 看到Escobedia Grdyflora(OrganChaceae)的发芽和植物发育:强制性半脊髓炎的证据。 Acta Biol Ogica Colombianana,20,133 - 140。https://doi.org/10.15446/abc.v20n3.43776 Cavar,S.,S.,Zwanburg,B。,&Tarkowski,P。(2015)。 互动:根际的出现,结构和生物学活性。<巫婆(Striga asiatica)的划分。杂草科学,32,494 - 497。https:// doi.org/10.1017/s0043174500059403 Brun,G。,Braem,L.,L.,Thhoiron,s。在寄生植物中看到了发芽:斯特里戈酮研究可以期望哪些见解?实验植物学杂志,69,2265 - 2280。https://doi.org/10.1093/jxb/ Erx472 Brun,G。,Spallek,T.,Simier,P。,&Delavault,P。(2021)。种子发芽和寄生杂草中的haustorianiegoeser的分子参与者。植物物理学,185,1270 - 1281。https://doi.org/10.1093/plphys/kiaa041 Brun,G.,Thoiron,S.,Braem,L.,Pouvreau,Pouvreau,J.-B. Simier,P.,Gevaert,K.,Goormachtig,S。,&Delavault,P。(2019年)。CYP707AS是雪人场景和2017年第10届年度签名路径的最常用。看到Escobedia Grdyflora(OrganChaceae)的发芽和植物发育:强制性半脊髓炎的证据。 Acta Biol Ogica Colombianana,20,133 - 140。https://doi.org/10.15446/abc.v20n3.43776 Cavar,S.,S.,Zwanburg,B。,&Tarkowski,P。(2015)。 互动:根际的出现,结构和生物学活性。看到Escobedia Grdyflora(OrganChaceae)的发芽和植物发育:强制性半脊髓炎的证据。 Acta Biol Ogica Colombianana,20,133 - 140。https://doi.org/10.15446/abc.v20n3.43776 Cavar,S.,S.,Zwanburg,B。,&Tarkowski,P。(2015)。 互动:根际的出现,结构和生物学活性。看到Escobedia Grdyflora(OrganChaceae)的发芽和植物发育:强制性半脊髓炎的证据。Acta Biol Ogica Colombianana,20,133 - 140。https://doi.org/10.15446/abc.v20n3.43776 Cavar,S.,S.,Zwanburg,B。,&Tarkowski,P。(2015)。互动:根际的出现,结构和生物学活性。
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
抽象类胡萝卜素裂解酶(CCOS)酶通过产生多种杀伤型及其衍生物,在植物生长和发育中起重要作用。这些化合物对于为花朵和水果以及合成的植物激素(例如脱甲酸和strigolactone)而言至关重要。尽管其重要性,但尚未确定向日葵中CCO酶的基因家族响应。在这项研究中,我们确定了葵花籽植物的CCO基因,以填补这一知识空白。系统发育和同步分析表明,在不同植物物种中保守的Helianthus annnus cco(Hacco)基因可以根据其保守域将其分为三个亚组。使用模因工具和多个序列比对分析在HACCO基因序列中鉴定出保守的基序。顺式调节元素(CRE)分析Hacco基因表明存在与植物激素,发育以及对生物和非生物胁迫的反应有关的各种响应元件。这意味着这些基因可能会对植物激素,发育提示和干旱胁迫反应,从而在发育更具耐药作物的发育中提供了潜在的应用。属于9-CIS-环氧类胡萝卜素双加氧酶(NCED)亚组主要表现出叶绿体定位,而在其他组中发现的基因主要位于细胞质中。通过60个miRNA调节了这21个鉴定出的Haccos,表明microRNA在向日葵中基因调节中的关键作用。在干旱胁迫下的基因表达分析显示,Hanced16和Hanced19的显着上调,这是ABA激素生物合成中关键的基因。在器官特异性基因表达分析中,HACCD12和HACCD20基因在叶片中表现出较高的活性,表明在叶子色素沉着中具有潜在的作用。这项研究为未来的研究及向日葵基因家族的调节和功能的研究奠定了基础。有可能开发可用于在育种计划中使用的分子标记物,以创建对生物和非生物胁迫具有抗性的新向日葵线。
1. Mahal BA、Berman RA、Taplin ME、Huang FW。黑人与非黑人男性不同格里森评分下前列腺癌特异性死亡率。JAMA。2018;320(23):2479 ‐ 2481。2. Stangelberger A、Waldert M、Djavan B。老年男性前列腺癌。Rev Urol。2008;10(2):111 ‐ 119。3. Antonarakis ES、Kibel AS、Yu EY 等。激素敏感性生化复发性前列腺癌患者中 sipuleucel-T 测序和雄激素剥夺疗法:一项 II 期随机试验。Clin Cancer Res。2017;23(10):2451 ‐ 2459。4. Sydes MR、Spears MR、Mason MD 等。在前列腺癌的长期激素疗法中添加阿比特龙或多西他赛:来自 STAMPEDE 多臂、多阶段平台方案的直接随机数据。Ann Oncol。2018;29(5):1235 ‐ 1248。5. Wallis CJD、Klaassen Z、Bhindi B 等人。醋酸阿比特龙和多西他赛与雄激素剥夺疗法在高风险和转移性激素初治前列腺癌中的比较:系统评价和网络荟萃分析。Eur Urol。2018;73(6):834 ‐ 844。6. Issa NT、Peters OJ、Byers SW、Dakshanamurthy S。RepurposeVS:一种以药物再利用为重点的计算方法,用于准确预测药物靶标特征。Comb Chem 高通量筛选。 2015;18(8):784 ‐ 794。7. Issa NT、Kruger J、Wathieu H、Raja R、Byers SW、Dakshanamurthy S。DrugGenEx ‐ Net:一种用于系统药理学和基于基因表达的药物再利用的新型计算平台。BMC 生物信息学。2016;17(1):202。8. Wathieu H、Issa NT、Fernandez AI 等人。使用系统医学方法对三阴性乳腺癌亚型的治疗进行差异化优先排序。Oncotarget。2017;8(54):92926 ‐ 92942。9. Simbulan ‐ Rosenthal CM、Dakshanamurthy S、Gaur A 等人。重新利用的驱虫药甲苯咪唑与曲美替尼联合使用可抑制难治性 NRASQ61K 黑色素瘤。Oncotarget。2017;8(8):12576-12595。10. Ringer L、Sirajuddin P、Tricoli L 等。p53 肿瘤抑制蛋白的诱导连接凋亡和自噬信号通路,调节前列腺癌细胞的细胞死亡。Oncotarget。2014;5(21):10678-10691。11. Liu X、Ory V、Chapman S 等。ROCK 抑制剂和饲养细胞诱导上皮细胞的条件性重编程。Am J Pathol。2012; 180(2):590 ‐ 607。12. Pollock CB、McDonough S、Wang VS 等。独脚金内酯类似物通过激活 p38 和应激反应途径在癌细胞系和条件性重编程的原发性前列腺癌细胞中诱导细胞凋亡。Oncotarget。2014;5(6):1683 ‐ 1689。13. Timofeeva OA、Palechor ‐ Ceron N、Li G 等。条件性重编程的正常和原发性肿瘤前列腺上皮细胞:一种用于研究人类前列腺癌的新型患者来源细胞模型。Oncotarget。2017;8(14):22741 ‐ 22758。14. Tricoli L、Naeem A、Parasido E 等。已定义的、多维培养条件对条件重编程原代人类前列腺细胞的影响。Oncotarget。2018;9(2):2193-2207。15. Yang H,Zonder JA,Dou QP。用于癌症治疗的新型蛋白酶体抑制剂的临床开发。专家意见 Investig Drugs。2009;18(7):957-971。16. Alumkal JJ、Slottke R、Schwartzman J 等人。富含萝卜硫素的西兰花芽提取物对复发性前列腺癌男性的 II 期研究。Invest New Drugs。2015;33(2):480-489。17. Moreau P、Mateos MV、Berenson JR 等人。复发和难治性多发性骨髓瘤患者每周一次与每周两次卡非佐米给药(ARROW):随机 3 期临床试验的中期分析结果。《柳叶刀肿瘤学》2018;19(7):953 ‐ 964。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月2日发布。 https://doi.org/10.1101/2024.01.02.573934 doi:biorxiv Preprint