轴D4100-E是用于众多应用的完全网络频闪警笛。通过Vapix®,MQTT或SIP,它连接到任何轴设备,轴VM或第三方VM,以使用Strobe Lighting和Siren Alarms发出信号和警报。例如,它是轴外围防守者外围保护的理想选择,或者使用车牌识别(LPR)摄像头改进停车场管理。包括各种声音夹和白色/RGBA光图案,可以使用配置文件进行设置以触发不同的响应。采用POE供电,这种强大的IP66-,NEMA-4X和IK10级设备具有一流的质量,支持和5年保修。
TEM 是研究电子设备纳米级特征的重要工具。TEM 基于散射的对比度在确定材料的物理结构方面表现出色,并且通过 EDS 和 EELS 等光谱附件可以精确确定设备中原子的组成和排列。结合原位功能,TEM 可以精确映射设备在运行和缺陷形成过程中的物理结构变化。但是,在许多情况下,设备的功能或故障是小规模电子变化的结果,这些变化在变化成为病态之前不会呈现为可检测的物理信号。为了在 TEM 中检测这些电子变化,必须采用与电子结构直接相关的对比度的互补成像。在 TEM 中获得电子对比度的一项技术是电子束感应电流 (EBIC) 成像,其中由光束在样品中产生的电流在 STEM 中逐像素映射。自 20 世纪 60 年代以来 [1],EBIC 电流产生的“标准”模式是在局部电场中分离电子-空穴对 (EHP)。最近,展示了一种新的 EBIC 模式,其中电流由束流诱导二次电子 (SE) 发射在样品中产生的空穴产生[2]。这种 SE 发射 EBIC (SEEBIC) 模式不需要局部电场的存在,通常比标准 EBIC 的电流小得多,并且能够实现更高分辨率的成像[3]。在基于 TEM 的技术中,SEEBIC 独一无二,还能产生与样品中局部电导率直接相关的对比度[4],即使在操作设备中也是如此[5]。在这里,我们讨论了 STEM EBIC 电导率映射技术,并提供了它在被动成像和原位实验中的几个应用示例。图 1 显示了 SEEBIC 电阻映射的简单演示。该设备由一条 GeSbTe(GST)条带组成,该条带横跨两个在薄 SiN 膜上图案化的 TiN 电极。图 1 中的 STEM EBIC 图像包含标准 EBIC 和 SEEBIC 对比度。如图所示,当电子束入射到 TiN/GST 界面时,肖特基势垒处的电场将 EHP 分开,空穴在每个界面处朝 GST 移动,在连接到 EBIC 放大器的右侧电极上产生暗对比度,在接地的左侧电极上也产生暗对比度。在这些界面之外,SEEBIC 对比度与左侧(接地)电极的电阻成正比 [4]。靠近 EBIC 电极(即,与接地电极相比,EBIC 电极的电阻更小)的 SE 发射产生的空穴更有可能通过该电极到达地,从而产生更亮的(空穴)电流。 SEEBIC 在右侧(EBIC)电极上最亮,由于非晶态GST的电阻率均匀,SEEBIC 在整个GST条带上稳定减小,在左侧电极上最暗[6]。
Title and abstract 1 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found Introduction Background/rationale 2 Explain the scientific background and rationale for the investigation being reported Objectives 3 State specific objectives, including any prespecified hypotheses Methods Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and相关日期,包括招聘,接触,随访和数据收集参与者的期限6(a)同类研究 - 确定资格标准以及参与者选择的来源和方法。描述随访的方法(b)队列研究 - 进行匹配的研究,给出匹配的标准以及暴露和未暴露的N/A
FCC语句:根据FCC规则的第15部分,已经对该设备进行了测试并符合B类数字设备的限制。这些限制旨在提供合理的保护,以防止住宅安装中有害干扰。此设备会生成,用途并可以辐射射频能量,如果未按照说明进行安装和使用,可能会对无线电通信产生有害的干扰。但是,不能保证在特定安装中不会发生干扰。如果此设备确实会对广播或电视接收造成有害干扰,这可以通过打开设备和开机来确定,则鼓励用户尝试通过以下一项或多项措施来纠正干扰:
*在病例对照研究中分别提供有关病例和对照的信息,如果适用,则针对队列和横断面研究中暴露和未暴露的组。注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。最佳使用本文的Strobe CheckList(可在http://www.plosmedicine.org/,http://wwwww.annals.org/,and Epidemiologoly and httttppppppppppppp://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 一下,至时候,自由使用一下Plos Medicine网站。有关Strobe Initiative的信息可在www.strobe-statement.org上获得。
*分别提供有关暴露和未暴露组的信息。注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。最佳使用本文的Strobe CheckList(可在http://www.plosmedicine.org/,http://wwwww.annals.org/,and Epidemiologoly and httttppppppppppppp://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 一下,至时候,自由使用一下Plos Medicine网站。有关Strobe Initiative的信息可在http://www.strobe-statatement.org上获得。
在按照目视飞行规则飞行时,飞行员主要依靠视觉扫描来避开其他飞机和空中碰撞威胁。联邦航空管理局的记录表明,与无人机的近距离接触正在增加,2016 年报告的无人机系统 (UAS) 目击或近距离碰撞达到 1,761 起。这项研究旨在评估飞行员目视检测配备频闪灯的 UAS 平台的有效性。10 名飞行员组成的样本驾驶通用航空飞机,对配备频闪灯的小型 UAS (sUAS) 进行五次拦截。参与者被要求指出他们何时目视发现无人机。比较飞机和 sUAS 平台的地理位置信息以评估能见距离。研究结果用于评估日间频闪灯作为一种增强飞行员 sUAS 检测、能见度和防撞能力的方法的有效性。参与者在 7.7% 的拦截中发现了无人机。由于缺乏数据点,作者无法确定频闪灯是否能改善 UAS 视觉检测。作者建议进一步研究使用 sUAS 安装的频闪灯进行夜间视觉检测的有效性。
注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/).有关Strobe Initiative的信息可在www.strobe-statement.org上获得。
注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。最佳使用本文的Strobe CheckList(可在http://www.plosmedicine.org/,http://wwwww.annals.org/,and Epidemiologoly and httttppppppppppppp://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 一下,至时候,自由使用一下Plos Medicine网站。有关Strobe Initiative的信息可在www.strobe-statement.org上获得。