Characterization of the unit - Name: Laboratory of engineering of the Versailles systems - Acronym: Lisv - Label and Number: EA 4048 - Number of teams: Three teams - Composition of the management team: Mr. Éric Monacelli (Director) Scientific Panels of the Panel 1: ST6: ST6: Sciences and Technologies of Information and Communication Panel 2: ST5: Sciences for the thematic engineer该单元是多学科和技术的,结合了理论方法和实验方法。它们涵盖了智能系统及其相互作用领域的广泛范围。在相关评估期开始时,包括2018年至2021年,该单元在两个团队中结构:一方面是“交互式机器人技术(RI)”,另一方面是“高级系统的仪器(ISA)”。2022年1月1日,由RI团队分队创建了第三支团队:“智能和协作的机器人循环系统系统(Symric)”。因此,自那天以来,该单元的结构是几乎相同的三支球队。交互式机器人团队(RI)专门研究人类机器人相互作用的研究和为人类利益而开发评估设备。他的科学主题是对互动的生物力学分析,行为和情感的评估,对人的帮助和流动性的评估,包括主要是对残疾人的人以及命令主题,在阻抗控制类型的特定方法中集成了命令主题。该团队中开发的应用符合社会问题,例如电动矫形器或假体的设计或功能康复。高级系统(ISA)团队的仪器对复杂系统的行为的表征感兴趣,该行为(称为高级系统)结合了机械,电子,光学和控制元素。它的科学主题是建模和多种选择,多尺度建模以及通过光学方式传输信息。在“未来行业”或汽车或太空部门的概念下,该团队中开发的申请主要对工业问题做出响应。团队团队智能和协作机器人系统(SYMRIC)对自我和机器人设备的开发感兴趣。他的科学主题是系统的设计和控制,特别是交互式系统,多物理模拟,知识表示和人工智能。该团队在该团队中开发的应用既应对社会和工业问题,例如互动无人机的设计或改善河流潮汐涡轮机或人形机器人的性能的贡献。LISV部门的历史和地理位置是一个接待团队,EA 4048,位于凡尔赛大学圣昆汀·恩维尔斯大学(UVSQ)本身,本身是在巴黎 - 萨克莱大学集成的。副研究人员是私人高等教育机构(ISEP)的个人。本单元来自2006年的合并,来自三个单元:LIRIS(CNRS-FRE 2508),其研究的重点是机器人技术和纳米技术,LRV(EA 3645)的研究还以机器人技术为中心,以及Lema(CNRS-FRE 2481)的研究,其研究侧重于材料和行为。迄今为止,该单位有23位UVSQ的教师研究人员(EC)和一名副研究人员,其中12名是HDR,还有5名研究支持人员(BY)。UVSQ的EC在CNU的第60和61节中非常高,并且第62、63和27节的范围较小。,他们的一半是依附于Vélizy-Rambouillet的IUT,本身位于两个地点:Vélizy-Villacoublay校园和Rambouillet的校园。对于另一半,它们隶属于位于Mantes-en-Yvelines校园的Mantes的IUT,位于Mantes-en-Yvelines校园的Isty工程学校,或位于Vélizy-Villaclay-Villaclay校园的UFF Sciences的校园。
Master Lumomat(有机电子的分子材料)的目标在与科学研究和技术创新的强烈相互作用方面提供了扎实的化学培训。它适合有机电子产品的新兴和很高的潜力,在接下来的10年中,该市场被要求将其乘以3。在这种情况下,它提供了在法国独特的现代培训,旨在面对对这个工业和学术领域的不断增长的需求,并为学生提供高级培训,从而打开了未来技术的所有高级技术的所有门,例如第三代光伏,Solar,OLED,OLED,OLED,传感器,传感器和环境,健康和环境,健康和环境,健康和环境,健康,感官和分子探险,信息的运输和存储。Master的目标Lumomat Master在与科学研究和技术创新方面进行了强烈互动方面的化学培训。它是有机电子的新兴和非常高的潜在领域的一部分。在这种情况下,它提供了现代培训,在法国独特,热爱满足工业和学者的需求不断增长,为学生提供高级培训,它们是对高科技领域的高级培训,例如第三代光伏,太阳能氧化剂,OLEDS,OLED,分子传感器和分子传感器和分子传感器和分子传感器和分子传感器和健康和环境的探针,结构化的纳米系统,用于传输和存储信息。在培训结束时,学生将了解化学工业和商业界,企业家精神,沟通和项目管理。技能针对主人2 Lumomat的目标是培训未来的专业人士在光子学和有机电子产品的分子材料领域。主体腔形成了能够通过物理化学分析,分子材料来构想,开发然后进行表征的多学科技能化学家,甚至确保其整合到光子和/或电子设备中。他们将能够: - 使用分子和超分子工程技术来合成功能材料。- 选择适当的表征技术和适当的理论模型,以优化功能材料的性质。- 恢复有关有机材料(光子学和电子)及其出口(当前和未来)及应用的知识。- 在有机材料(分子和电子光子学)领域监督和进行研发项目。预期技能Lumomat Master 2旨在培训有机光子学和电子产品的分子材料领域的未来专业人员。Lumomat大师训练化学家具有多学科技能,能够设计,开发然后表征物理化学上的分子材料,甚至将其整合到光子和或电子设备中。在培训结束时,学生将了解化学工业以及商业环境,沟通和项目管理。他们将能够: - 使用分子和超分子工程技术来合成功能材料。- 选择适当的表征技术和适当的理论模型来优化功能材料的性质。- 恢复有关有机材料(光子学和电子学)及其插座(当前和未来)及应用的知识。- 有机材料领域(分子光子学和电子产品)中监督和铅研发项目。
单元的表征 - 名称:实验室图像,信号和智能系统 - 首字母缩写:Lissi-标签和数字:EA 3956-团队数:四个团队 - 管理团队组成:Yacine Amirat先生,董事; SénartScienceand Technologies ST6信息和通信科学和技术的SénartScientificCanel站点的副主任Kurosh Madani先生 - Lissi的主题主题主题是在信息和通信技术领域进行多学科,理论和应用研究,主要介绍了计算机视觉,医学远景和通信网络。其主要针对的申请领域是健康和福祉的领域,重点是诊断和治疗监测,老龄化,对受抚养人或残疾人的帮助以及电子健康的帮助。LISSI在四个研究团队(35个永久性),一个行政服务(永久性)和技术和计算机服务(永久性)中构建。LE LISSI单位的历史和地理位置是巴黎最佳克雷蒂大学(UPEC)的接待团队(EA 3956)。是在2005年1月合并了三个UPEC研究单元的合并:Liia(EA 1613),Leriss(EA 412)和I2S(I 2353)。Lissi Coes是系统的竞争力集群的六个枢纽之一,其UPEC是成员。单位有效:在12/31/2023的自然人中四个研究团队是1/ SIMO(信号,图像和优化):优化学习;计算机视觉和医学成像;元硫代主义(9个永久性),2/ Synapse(人工认知系统和生物启发的感知):人工认知和感知;生物识别和医学诊断(9个永久性),3/ Sirius(智能,环境和服务机器人技术):机器人流动性援助和康复系统;识别上下文和环境智能(11个永久性)和4/ CIR(网络中的智能控制):网络的控制/控制;经验质量;包含方向的网络;由软件管理的网络;强大的动态网络(6个永久性)。他在两个UPEC站点上托管:1/ Vitry-Sur-Seine University University Campus(1140平方米),该部门的主要位置,该站点还设有部门的管理以及行政和技术服务以及2/SénartUniversity Campus(50m²),位于Vitry-Sur-Serine Site Site的45公里,该活动的研究是Welly Cann的一部分。LISSI部门的研究环境为贸易和资格校园(CMQ)做出了贡献,“健康,自主权,衰老良好”,由UPEC携带的PIA 3,以及Erasmus Project(教育和研究以通过委员会提高社会任务)在2021年在2021年在2021年获得了pia of Project of Pia pia for Pia 4 call of Project。
所有这些都主张从建设性和安抚性的角度对与法律和秩序管理相关的问题进行反思。本报告正是在此框架和精神下编写的。权利捍卫者负责捍卫基本权利和自由,包括示威权和身体完整权,因此,他开展了一项研究,以评估维护秩序的工具和方法是否符合道德规则,通常依靠他根据提交给他的案件所提出的建议。人权捍卫者成立了负责这项工作的代表团,并于 2017 年选举期结束时开始调查。鉴于主题的规模和所涉主题的多样性,研究调查范围仅限于公共当局对在大都市地区为抗议或公开表达而组织的流动或静态集体运动的管理,涉及道德和安全规则以及对权利和自由的尊重。在我们的研究结束时,维持秩序的管理——旨在允许行使公共自由同时尊重公共秩序——在其理论上表现为一种结构化和专业化的系统。另一方面,其实施引起了示威者和警方的各种批评和重大紧张,需要加强培训和控制要求(第一部分)。过去几年里,我们社会的发展——新参与者和新抗议模式的出现、过度媒体化和即时信息、与机构关系的转变等——促使公共当局努力调整其管理公共秩序的做法和手段。同样,面对恐怖主义威胁下日益增长的安全需求,维持秩序的司法和镇压层面在公共秩序管理中占据了更为重要的地位,而监督和保护示威活动的使命则受到损害。因此,维持秩序的理论所依据的公共自由的行使与安全约束之间的微妙平衡被削弱了。实施更加保障自由的执法确实是更加和平管理的条件。虽然与示威期间发生的暴行有关的安全需要要求采取镇压措施,但必须优先采取预防行动并支持示威自由。此外,保护示威自由和维持秩序的首要任务必须促使安全部队将使用诸如在
概要 人畜共患病 60% 是突发传染病,70% 是野生动物的人畜共患病。 Les chauves-souris sont les hôtes de nombreuxagents infectieux, notamment deviruses responsables de Zoonoses chez l'Hommecomme 病毒埃博拉病毒、 尼帕病毒或亨德拉病毒。近期,新冠病毒在人类和动物群体中蔓延,对公共健康产生重要影响,并成为经济发展的主要动力。冠状病毒 (CoV) 与严重呼吸综合征 (SRAS)、中东呼吸综合征 (MERS) 和猪肉腹泻综合征 (SADS) 相关,人类负有责任猪的死亡率很高。还需要研究世界各地冠状病毒的识别、多样性的实际情况以及热带岛屿生态系统中冠状病毒的危险关联 精确。这些目标是研究冠状病毒在年轻人中的生态学和演化。在第一时间,我们将密切关注新冠病毒的爆发,以及印度洋西部岛的病毒进化史。对 1088 个生物学分子的分析,以证据为基础,首次展示了来自塞约特岛、桑比克岛、留尼汪岛和马达加斯加的冠状病毒的存在。冠状病毒感染的全球流行率为 8.0% ± 1.2%,在非洲大陆和岛屿之间存在显着变异,主要是在非洲大陆和岛屿之间。我们可以识别α-冠状病毒和β-冠状病毒的遗传多样性,但不能确定人类冠状病毒的系统发育过程(例如HCoV-NL63、HCoV-229E、MERS-CoV)。 Enfin是冠状病毒家族的系统发育史,支持了冠状病毒与印度洋和西方冠状病毒之间的长期共同进化历史。我们正在第二次研究冠状病毒动态感染的纵向研究,特别是留尼汪岛特有的小莫洛斯母体殖民地。根据在环境预防措施(粪便和鸟粪)中检测基因组病毒的情况,我们探索了连续几年的感染动态对人口结构的影响。蒙特伦特的一系列变化结果显示,感染流行情况是在季节中出现的,并且存在两张感染图片:lors de la colonization de la grotte de maternité (associé à uneauguration de la densité des hôtes), et en mois après le début de la parurition (associé à la perte d'immunité chez les nouveaux -nés)。冠状病毒在印度洋西部的冠状病毒进化合奏是主要由于病毒与病毒的共同进化而产生的,在岛屿内的环境下,它与岛内的物种形成了联系。肖韦苏里斯家庭。生态学和生物学事实证明了人口流动性感染的动态性,它是冠状病毒传播的风险,与其他国家的社区功能不同 - 澳大利亚查克岛的最新报道人口结构和时间变化。
摘要 人畜共患病占新发传染病的 60%,其中 70% 来自野生动物。蝙蝠是许多传染源的宿主,特别是导致人类人畜共患病的病毒,如埃博拉病毒、尼帕病毒或亨德拉病毒。在过去的二十年中,源自蝙蝠的新病毒在人类和动物种群中出现,对公众和兽医健康以及经济产生了重大影响。严重急性呼吸综合征 (SARS)、中东呼吸综合征 (MERS) 和急性猪腹泻综合征 (SADS) 等冠状病毒 (CoV) 的情况尤其如此,它们导致数千人死亡以及大量死亡。养猪场的死亡率。尽管大量研究已在全球范围内发现了蝙蝠冠状病毒,但目前对热带岛屿生态系统中冠状病毒出现的多样性和风险的了解仍有待准确评估。本论文的目的是研究蝙蝠种群中冠状病毒的生态和进化。最初,我们对宿主接触 x CoV 的程度以及这些病毒在西印度洋岛屿的系统发育地理学背景下的进化历史感兴趣。基于对 1088 个样本的分子生物学分析,这项研究首次强调了 εayotte、εozambique、留尼汪岛和马达加斯加的食虫蝙蝠中存在 CoV。蝙蝠感染冠状病毒的总体患病率为 8.0% ± 1.2%,非洲大陆和岛屿之间以及蝙蝠科之间也存在显着差异。我们发现了 α-CoV 和 β-CoV 的巨大遗传多样性,其中一些在系统发育上与人类 CoV 接近(例如HCoV-NL63、HCoV-229E、MERS-CoV)。最后,这些 CoV 在系统发育上由蝙蝠家族构成,支持西印度洋蝙蝠与其 CoV 之间共同进化的悠久历史。然后,我们对留尼旺岛特有物种小莫洛瑟尔 (Mormopterus francoismoutoui) 产妇群体中 CoV 感染的动态进行了纵向研究。基于对环境样本(粪便和鸟粪)中病毒基因组的检测,我们探讨了连续两年内人口结构对感染动态的影响。结果显示,蝙蝠感染率在季节变化中存在非常明显的变化,存在两个感染高峰:在产房洞穴定殖期间(与宿主密度增加有关),以及大约一个月分娩后(与新生儿免疫力丧失有关)。所有这些工作表明,西印度洋蝙蝠体内冠状病毒的进化主要是由于宿主与其病毒之间的共同进化,尽管岛屿环境也可能导致蝙蝠家族内岛屿内的物种形成。在种群水平上影响感染动态的生态和生物因素的识别突出表明,冠状病毒传播给其他宿主的风险因每个岛屿上现有的蝙蝠群落而异,也取决于宿主种群的结构和它的时间变化。