通过低温扫描隧道显微镜和光谱学的低温扫描隧道显微镜和光谱研究,已经研究了在RU(0001)上生长的纳米结构上的外延地石墨烯(纳米结构上的外延石墨烯)上的非成激素的表面光学。存在空间位于前体被吸附的区域中的空间位置,并在电磁频谱区域进行努力访问的区域,在那里进行N-π *跃迁,允许将前体转化为100%。在最新的理论计算的帮助下,我们表明,这种高收率是由于传入的光以及随之而来的电子转移到前体的无弹性散射机制的有效人数。我们的发现是实验证实,表面状态可以在复杂的表面光化学中发挥重要作用
a 诺拉宾特阿卜杜拉赫曼公主大学科学学院物理系,邮政信箱 84428,利雅得 11671,沙特阿拉伯 b 卡玛维尔巴劳帕蒂尔学院 Rayat Shikshan Sanstha 物理系,瓦希,新孟买,400703,马哈拉施特拉邦,印度 c 哈立德国王大学科学学院物理系先进功能材料与光电子实验室(AFMOL),沙特阿拉伯阿卜哈 61413 哈立德国王大学先进材料科学研究中心(RCAMS),沙特阿拉伯阿卜哈 61413,邮政信箱 9004 e 阿斯旺大学科学学院物理系,埃及 f 吉赞大学科学学院物理系,邮政信箱。 114,吉赞,45142,沙特阿拉伯 g 昌迪加尔大学化学系和大学研究与发展中心,莫哈里 - 140413,旁遮普,印度 h 佛罗里达理工大学环境工程系纳米生物技术实验室,莱克兰,佛罗里达州 33805,美国 i 石油和能源研究大学工程学院,德拉敦,248007,印度
“提取以下信息:临床历史记录的半脱落清单190陈述,每个陈述描述了患者历史记录中的发现,包括任何诊断。只有191个包括明确提及“临床病史”或患者病史的部分。如果192中的任何历史提及为负,则否定应包括在每个陈述中,例如,193年“克罗恩斯或加州大学的历史没有任何历史”应成为“克罗恩病的史无前例”,“没有194个溃疡性结肠炎的历史”。195
固态等离子体Wakefield加速度最近引起了人们的关注,作为在1台电视/m或以下[1,2]下达到前所未有的超高加速度梯度的可行替代方案。在这种情况下,纳米制造技术的最新进展[3]开辟了具有具有不均匀性能的结构化等离子体的可能性。例如,碳纳米管(CNT)束和多层石墨烯的利用[4]具有产生稳定的等离子体的巨大潜力,其电子密度达到10^24 cm^-3,即比常规气体血浆高的数量级。作为新的合作努力的一部分,称为NanoACC(纳米结构在加速器物理学中的应用),我们进行了粒子中的粒子(PIC)模拟,以研究利用CNT阵列的激光驱动和光束驱动的预电目标激发。我们的结果证实了在电视/m量表上获得韦克菲尔德的成就。此外,我们已经观察到现象,例如自注射,次秒束形成以及微米尺度靶标内电子的加速,导致动力学能量约为10 meV。这些发现为操纵带电的粒子梁的有希望的可能性开辟了可能性,从而塑造了紧凑的加速器设计和辐射源的未来。此外,通过有效控制目标结构,固态等离子体在提取相关的束参数方面具有高度的可调性。在本文中,我们介绍了纳米ACC合作进行的研究概述,并讨论未来的实验计划以及潜在的应用。
热解转化是通往碳基纳米构造的最有希望的可持续途径之一,包括碳点(CDS)。然而,功能化碳点的分子组成仅限于杂原掺杂,并掺入了几个单一金属前体。此外,大多数这些修改都是通过剧烈的后移植程序进行的,需要有机溶剂来用于碳扩散,并且由于不兼容的实验条件而占据了大型潜在反应物的库。在与知名文献的显着差异中,我们在这里披露了一种创新且高度用途的方法,以丰富碳点功能。这种简单的方法将壳聚糖作为碳前体和金属烷氧化物融合为陶瓷前体,并通过碳水化合物溶液的热液转化来探索两个不同的“金属氧化物@碳点”相的双胞胎生长。由于壳聚糖朝金属烷氧化物前体的结构导向效应,一组晶体金属氧化物,包括二氧化钛,氧化钛和氧化铁簇,在原位形成的氮含量碳框架中直接融合。独特的方法,以下方法将水作为溶剂和可再生生物量作为碳源,并有望阐明废弃的生物废物在工程功能性纳米材料方面的隐藏才能。
僵硬与韧性之间的冲突是工程材料设计中的基本问题。,从未证明过具有最佳刚度阻止权衡取舍的微观结构化合物的系统发现,这受到模拟与现实之间的差异以及对整个Pareto阵线的数据有效探索之间的差异的阻碍。我们引入了一条可推广的管道,该管道将物理实验,数值模拟和人工神经网络集成以应对这两个挑战。没有任何规定的材料设计专家知识,我们的方法实现了嵌套循环提案验证工作流程,以弥合模拟到现实差距,并找到微观结构化的复合材料,这些复合材料僵硬而坚硬,具有较高的样品效率。对帕累托最佳设计的进一步分析使我们能够自动识别现有的韧性增强机制,这些机制以前是通过反复试验,错误或仿生物质发现的。在更广泛的规模上,我们的方法为除固体力学外的各种研究领域(例如聚合物化学,流体动力学,气象学和机器人学)提供了计算设计的蓝图。
图1。(a)根据块的体积分数(f a),可从微观相期望的定义形态的示意图。(b)AB二嵌段共聚物预期的理论相图取决于F a和χn。(c)实验获得的PS -B -PI二嵌段共聚物的相图。从F. S. Bates,G。H。Fredrickson复制;块共聚物 - 设计器软材料。物理学今天1999年,第52(2)卷,第32-38页,在美国物理研究所的许可下。9虽然SEM和AFM技术已被经典地用于获取一些有趣的信息
b'by gr \ xc3 \ xb6bner基依据[FJ03]。相比之下,解决80个布尔二次方程的随机,非结构化的系统仍然是一个艰巨的挑战,在实践中尚未完成。饼干属于多元加密系统的第二类。为了减少签名的大小,其设计师使用特殊形状的多项式。每个(二次)公共多项式可以写入f + g \ xc3 \ x97 H,其中f,g和h是n个变量中的仿射形式。关键是在某些输入向量X上评估这一点需要在有限字段中通过非恒定体进行单个乘法。这是一个非常强大的结构:虽然(n + 1)(n + 2) / 2系数描述了通用的二次多项式,但A \ xe2 \ x80 \ x9c biscuit -style \ xe2 \ x80 \ x80 \ x80 \ x9d polynomial仅由3 n n n n + 1 coefficiations进行了充分描述。设计师观察到,与一般MQ问题相比,这种结构可以实现更好的攻击算法。在提交文档[BKPV23A]中,他们提出了一种简单的组合算法,该算法在n变量的n变量中求解饼干 - 式多项式系统,并在有限的字段上使用\ xcb \ x9c o q 3 n/ 4操作,并使用Q元素进行Q元素。这比详尽的搜索\ xe2 \ x80 \ x94要好得多。它需要\ xcb \ x9c o(q n)操作。在一般情况下,没有这种改进的组合算法,这是一个很大的暗示,即额外的结构使问题更容易。
Adeel Liaquat bhatti, Aneela Tahira, Alessandro Grandone, Raffaello Mazzaro, Vittorio Morandi, Umir Aftab, Muhammad Ishaq Abro, Ayman Nafady, Kezhe Q, Antonia Infants-Molina, Alberto Vaberto Vamiero, Zafar Hussain Ibupoto, NanistrucTured CO3O4电催化剂用于OER:有机聚电信作为软模板的作用,Electrochimica Acta,第398、2021页,Adeel Liaquat bhatti, Aneela Tahira, Alessandro Grandone, Raffaello Mazzaro, Vittorio Morandi, Umir Aftab, Muhammad Ishaq Abro, Ayman Nafady, Kezhe Q, Antonia Infants-Molina, Alberto Vaberto Vamiero, Zafar Hussain Ibupoto, NanistrucTured CO3O4电催化剂用于OER:有机聚电信作为软模板的作用,Electrochimica Acta,第398、2021页,
我们的第一期纳米材料特刊引起了极大的兴趣,这表明纳米材料是一个多么重要的研究课题。因此,为了继续研究这个课题,我们决定推出新一期的特刊,其中也专门介绍纳米结构在各个研究领域的最新进展。在这期中,我们将再次专注于发表描述纳米材料(如纳米粉末、纳米陶瓷、玻璃、胶体、复合材料、薄膜或生物材料)的新颖和有趣特性的文章。我们鼓励您发送理论和实验手稿,展示纳米尺寸如何影响材料的物理特性。文章可以包括物理、化学、材料工程或生物学领域的研究成果,只要它们关注不同类型的纳米结构及其应用。