子宫颈的摘要癌是一个全球问题,近距离放射治疗是用于治疗此类癌症患者的主要放射治疗成分之一。随着治疗计划中的科学和技术发展的出现,有必要在近距离放射治疗中进行反相反的优化,并与传统的手动优化方法进行了彻底的比较。在这项工作中,物理参数;分别使用D 98和D 90代表的目标体积的最低剂量为98%和90%,用于评估相对于目标的治疗计划,而2厘米3卷(d 2cm 3)收到的最低剂量用于研究处于风险的器官的并发症。使用的符合性指数硬币用于描述按规定的剂量和每个器官的分数,每个器官处于接收临界剂量的风险量,这可能会导致并发症。还根据无放射生物学参数并发症控制概率P +进行了治疗计划评估。与同源手动图形优化计划进行了比较,与两种近距离抗体抗体计划算法相对应的物理和放射生物学评估。这项研究的主要观察结果是,反相反优化方法的良好调整类解决方案可能与手动图形优化计划产生的剂量体积直方图产生相似的剂量量直方图,并且反向方法有可能避免有风险的机器人,同时为目标提供可接受的剂量。此外,放射生物学索引(例如P +)可以对治疗计划评估中的物理参数有用。Elekta Leksell GammaKnife®单位已成功用于颅内恶性肿瘤的管理已有半个多世纪。根据国家和国际法规的要求,为了保护患者,工人,公众和环境,必须通过电离辐射工具构成的风险有足够的知识。从这个角度来看,斯德哥尔摩大学物理系(斯德哥尔摩,瑞典)的核物理研究小组与Elekta Instrument AB(瑞典斯德哥尔摩,瑞典)合作进行了调查,对使用高纯度德国人(Hpge)gamma刀的辐射场进行了调查。作为正在进行的研究的一部分,本工作的主要目的是改善伽马刀周围的辐射场的建模和表征,以询问国家辐射保护与测量委员会(NCRP)方法论对Leksell Gamma刀具治疗室的结构屏蔽设计和评估的功效。在Gamma刀 - 完美TM领域中获得高分辨率γ射线光谱和环境剂量等效H*(10)发生在萝洛林斯卡大学医院(瑞典)(瑞典)Neurosurgery(肿瘤学系)神经外科(肿瘤学系)。分别利用了P型同轴HPGE检测器和卫星测量表来获取γ射线光谱和H*(10)。在Pegasos Monte Carlo系统上模拟了测得的配置。圆柱表面上的一个相空间用敞开的门封闭了伽马刀,并且组装的幻影被用作辐射的来源。在对应于2·10 12衰变的相空间上收集了约4·10 7γ光子。在打开伽马刀门的情况下,大多数辐射是在向前方向上测量的,相对于Z轴,沿向前的方向至θ= 45 O。蒙特卡洛模拟重现了测得的结果;因此,在响应测量和模拟光谱之间实现了良好的一致性。最近的Gamma刀模型Perfexion TM,Icon TM和Esprit TM
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
摘要 在过去的几十年中,全基因组关联研究 (GWAS) 导致与人类特征和疾病有关的遗传变异急剧增加。这些进展有望带来新的药物靶点,但从 GWAS 中识别致病基因和人类疾病背后的细胞生物学仍然具有挑战性。在这里,我们回顾了基于蛋白质相互作用网络的 GWAS 数据分析方法。这些方法可以在没有直接遗传支持的情况下对 GWAS 相关位点或疾病基因相互作用因子中的候选药物靶点进行排序。这些方法可以识别出不同疾病中共同受影响的细胞生物学,为药物重新利用提供机会,也可以与表达数据相结合以识别局部组织和细胞类型。展望未来,我们预计这些方法将随着特定情境相互作用网络表征和罕见与常见遗传信号的联合分析方面的进展而得到进一步改进。
传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
› 知识表示、机器推理、规划、机器学习、人类语言处理和技术、人机交互 › 工业和服务机器人、在复杂和非复杂环境中感知、决策和执行机器人动作的先进技术在现有机器人平台上结构化、优化和实施基于人工智能的软件解决方案 › 语音、图像和视频信号的获取、处理和解释、计算机视觉和应用 › 认知神经科学、认知和大脑结构及其在人工智能模型中的应用 › 原则、法律以及人工智能系统的设计和应用的道德、法律及其应用 › 商业和经济流程,用于基于人工智能系统的产品和服务的组织、管理和创新
bio:DirkMüllmann在Osnabrück大学学习法律,并在杜塞尔多夫高等区域法院完成了法律书记。他正在法兰克福大学歌德大学攻读博士学位。他的研究重点是数据保护和IT安全问题。他曾在波恩的联邦数据保护和信息自由(BFDI)的法律事务部担任法律顾问,并担任Spiecker Gen教授法兰克福大学法兰克福的公法,信息法,环境法,环境法和行政科学主席的研究助理。 döhmann。
国家或居住1专家Abdelali Kaaouachi教授11.1数学摩洛哥2专家教授协助。阿德里安·斯坦(Adrian Stan)12.3罗马尼亚牙科医学3专家协会。Prof. Agnieszka Dardzińska-Głębocka 05.4, 05.5, 06.0, 06.9, 11.0Vocational and Technical Education, APoland 4 Expert Prof. Dr. Ahmad Zargari 06 Industrial Technology, Engineering TecUSA 5 Expert Prof. Dr. Alan Brickwood 03 Furniture and interior design, Fashion DUnited Kingdom 6 Expert Prof. Dr. Alen Host 04, 14?外贸政策,区域综合阿特亚7学生专家博士。Cand Alena Lohrmann 06.0,06.2,06.9工程,技术电气工程俄罗斯8专家Alexandre Tugui 04,04.3,14 Information Technologies,会计,罗马尼亚9学生专家博士。Cand Alicia Presencio Herrero学生传播,新闻,广告10专家Phd Anastastios Dagiuklas 11计算机科学,计算机工程Engineerigreece 11 Expert Assoc。Prof. Anca Greere 09 Philology, English Language, Quality ARomania 12 Expert PhD Anca Prisacariu 05 Education Management, Education LeaRomania 13 Expert Prof. Dr. Andrea Serban 04, 14 Economics, Business &Administration Romania 14 Expert Prof. Dr. Andreas Mehrle 06.1 Mechatronics, Mechanical Engineering Austria 15 Expert Prof. Dr. Andrew Goodspeed 09 English Literature;爱尔兰文学;阿米尔兰16专家协会。Prof. Andriana Surleva 13.3 Chemistry (Analytical Chemistry) Bulgaria 17 Expert Prof. Dr. Anida Kisi 09 French Language Albania 18 Expert PhD Anna Bara 08.3, 10, 14.6 History, Law, International Relations, DAustria 19 Expert PhD Anna Helesh 05, 15, QA Accreditation and Evaluation, Qualitty Ukraine 20 Expert Prof.协助。Anto Cartolovni 12医学和健康科学(医学克罗地亚21专家AntonioSánchezPozo博士教授AntonioSánchezPozo13.6生物科学,健康科学,NSPAIN,NSPAIN 22专家Phd Arlind Farizi 09 Philogology 09 Philogology,Plyology,文学北部MACEDONIA 23 MACEDONIA 23 MACEDONIA 23 EXPECTArmand Faganel教授04旅游,市场,管理,斯洛文尼亚
对活动和预期研究结果的综合描述本论文的目的是推进数学模型和分析工具,以调查信息传播到在线社交网络上的动态及其对传播错误或误导新闻的影响。这项研究将借鉴来自各个领域的专业知识,包括随机过程,网络理论,数据科学,人工智能和统计,以分析在多个社交媒体用户中形成的社交网络的结构和功能特征,以及多个社交媒体平台(可能跨越)多个社交媒体平台,以及相关的动态过程推动了内容的扩散。通过我们的研究,我们旨在通过开发适当的数学和统计工具来为对在线通信动态的理解做出贡献。我们的最终目标是向记者,事实核对者和决策者提供有关特定信息来源的可信度,并协助特定决策者做出有关遏制错误信息和虚假信息的决策的信息。为了实现这些目标,我们将采用一种跨学科的方法,该方法将促进我们对在线社交网络作为数学模型和社会技术系统的理解。在第三个实施阶段,该项目将将传统的统计方法与切割机器学习算法合并。目的是处理在线消息的广泛数据库,并提取有关循环内容的见解,否则在此规模上将无法实现。我们的重点将放在(i)数学模型的开发上,这些模型有效地捕获了在线社交媒体平台(例如Telegram,YouTube或Twitter)的复杂性; (ii)开发统计工具以根据其属性来识别模式,预测结果并对不同的在线叙事进行分类; (iii)在社交媒体数据的大量存储库中实施这些工具,并识别解决方案以最大程度地减少虚假信息扩散。此外,我们将探索强化学习和合作AI方法论,作为开发旨在减轻错误信息和虚假信息的社会影响的社会机器人的潜在解决方案,最终努力促进更可持续和有效的在线环境。
专家警告说,削减资金在关键时刻。美国已报告了今年12个州的222例麻疹病例,自2019年以来,幼儿园的疫苗接种率下降。一个孩子死于麻疹,另一次死亡正在调查中。