基因组环境协会(GEA)是一种通过与环境参数结合遗传变异来识别适应位点的方法,从而提供了提高作物弹性的潜力。但是,其在Genebank配件上的应用受到丢失的地理来源数据的限制。为了解决这一限制,我们探索了神经网络来预测大麦加入的地理起源,并将估算的环境数据整合到GEA中。神经网络在交叉验证方面表现出很高的精度,但偶尔会产生可行的预测,因为模型仅被视为地理位置。例如,一些预测的起源位于不可理的区域内,例如地中海。使用大麦开花时间基因作为基准,GEA整合了估算的环境数据(n = 11,032),与常规GEA(n = 1,626)相比,在开花时间基因附近的基因组区域进行了部分一致但互补的检测(n = 1,626)(n = 1,626),从而突出了GEA与估计的GEA的潜在的互补的GEA,并在互补的GEA中突出了。同样,与我们最初的假设相反,可以通过增加样本量来预期GEA性能会有显着改善,我们的模拟产生了意外的见解。我们的研究表明,通过预测丢失的地理数据,GEA方法的敏感性对相当大的样本量的敏感性有潜在的局限性。总体而言,我们的研究通过与GEA进行深入的学习来提供有关利用不完整的地理起源数据的见解。我们的发现表明,需要进一步开发GEA方法来优化估算的环境数据的使用,例如结合区域GEA模式,而不是仅仅关注大型景观跨等位基因频率和环境梯度之间的全球关联。
来自AV服务的开发。这些研究表明,此类服务的引入将产生相对不同的影响(Narayanan等,2020)。首先,通过不再需要驾驶行为,用户将能够在坐在自动驾驶汽车上时从事其他活动,例如Leience或工作。这预计会导致较低的流行时间储蓄价值削弱(Correia等,2019; Kolarova等,2019; Berrada等,2020),随后降低了一般的旅行成本。关于公共交通(包括出租车和乘车),随着技术的成熟,驾驶员的缺失也可能导致运营成本较低(Anderson等,2016;Bösch等,2018)。AV服务还有望改善具有lim运动的人,例如老年人,儿童或没有驾驶执照的成年人(Meyer等,2017)。由于自主技术也应导致车辆之间的驾驶和合作(例如,排成),因此在emisions(Bauer等人,2018年),事故(Clements and Kockelman,2017年)和一sims pains simnonomos wish simoni and and and noporweape simnip and and and and and and(baockelman,2017年)也可以提高(Simnii and),也可以增加(simnii and and)。这些预期的收益仍然存在争议。较低的旅行时间节省值也可能通过减轻峰值传播现象来加剧拥塞(van den berg and verhoef,2016年)。AV服务还可能导致由于旅行成本较低而导致的流量增加 - 通过私人运输的时间,货币运输的成本,通过较低的票价进行公共交通的货币 - 2019年; Childress等人,2015年)或由于陷入困境(Fagnant和Kockelman,2014年)。4结合以下事实:从生命周期的角度来看,由于它们所涉及的附加设备和数据处理,AVS可能比传统电动汽车发电更多,这些点使AV服务的环境影响极高地不确定(Golbabaei等,2020; Wadud et; Wadud等,2016)。同样,关于AV服务的财务成本,尤其是基础结构成本,在文献中吸引了较少的关注。
在法国核研究所的框架下,CEA 与 AREVA 和 EDF 合作开发了铬涂层,旨在保护当前的锆合金核燃料包层材料免受高温蒸汽氧化(尤其是在意外条件下)的影响。本文重点介绍了锆合金-4 和基材上的铬涂层包层的最新研究结果。AREVA 发表了一篇补充论文 [1]。图中显示了铬涂层的典型制造微观结构。在 415°C(蒸汽,100 巴)下对未涂层参考材料和铬涂层锆合金-4 基样品进行了初步高压釜氧化试验,结果显示上一代 Cr 涂层的制备结果非常令人鼓舞。此外,还介绍了在蒸汽中高温 (HT) 氧化后获得的结果。结果表明,与传统的未涂层材料相比,迄今为止开发的铬涂层可以显著改善高温氧化后的包层机械性能(即延展性和强度)。因此,开发的铬涂层为冷却剂缺失事故(LOCA)提供了显著的额外裕度,并且在一定程度上为超越 LOCA 的条件提供了显著的额外裕度。
中风导致的神经元损失迫使 80% 的患者接受运动康复治疗,为此可以使用脑机接口 (BCI) 和神经反馈 (NF)。在康复过程中,当患者尝试或想象执行动作时,BCI/NF 会根据他们的感觉运动相关大脑活动为他们提供同步的感觉(例如触觉)反馈,旨在促进大脑可塑性和运动恢复。上升(即体感)和下降(即运动)网络的共同激活确实能够显著改善功能性运动,并产生显著的感觉运动相关神经生理变化。体感能力对于患者感知 BCI 系统提供的反馈至关重要。因此,体感障碍可能会显著改变基于 BCI 的运动康复的效率。为了准确理解和评估体感障碍的影响,我们首先回顾了中风后基于 BCI 的运动康复的文献(14 项随机临床试验)。我们表明,尽管体感能力在基于 BCI 的卒中后运动康复中发挥着核心作用,但后者很少在相关文献中被报道和用作纳入/排除标准。然后,我们认为,体感能力已被反复证明会影响一般的运动康复结果。这强调了在基于 BCI 的卒中后康复中也考虑它们并在文献中报告它们的重要性,特别是因为一半的卒中后患者患有体感障碍。我们认为,如果我们想准确评估体感能力对 BCI 效率的影响,就应该系统地评估、控制和报告体感能力。不这样做可能会导致对报告结果的误解,而这样做可以提高 (1) 我们对运动恢复机制的理解 (2) 我们根据患者的障碍调整治疗的能力和 (3) 我们对文献中提到的受试者间和研究间治疗结果差异的理解。
在过去十年中,石墨烯因其独特的电气特性(如高电子迁移率和高饱和速度 [1])而备受关注。遗憾的是,由于没有带隙,石墨烯不适合数字电路应用。在模拟 RF 电路中,传统的 MOSFET 结构(如石墨烯场效应晶体管 (GFET))能够达到约 400 GHz 的截止频率 (f T ) [2],但输出特性的非饱和行为 [3] 导致重要 RF 性能指标的下降,因为固有电压增益 A V = g m / g ds 。出于这个原因,最近提出了新的基于石墨烯的晶体管概念,如石墨烯基晶体管 (GBT, [4]),利用通过薄电介质的量子隧穿,如热电子晶体管 (HET, [5])。GBT 由垂直结构组成(图1 中的插图),其中石墨烯片用作控制电极,即基极 (B),位于图1 中的 x = 0 处。基极通过发射极-基极和基极-集电极绝缘体(分别为 EBI 和 BCI)与金属或半导体发射极 (E) 和金属集电极 (C) 隔开 [4]。在正常运行中(即正基极-发射极偏压,V BE > 0 和正集电极-基极偏压,V CB > 0),电子隧穿 EBI,垂直于石墨烯片 (GR) 穿过基极,然后沿着图1 中的 x 方向漂移穿过 BCI 的导带 (CB)。尽管其单原子厚度,
1 传染病数学建模部,巴黎城市大学巴斯德研究所,U1332 INSERM,UMR2000 CNRS,法国巴黎,2 巴黎城市大学,INSERM,IAME,F-75018,法国巴黎,3 巴斯德研究所,抗菌药物逃避流行病学和建模研究部,法国巴黎,4 巴黎萨克雷大学,UVSQ,INSERM,CESP,抗感染逃避和药物流行病学研究小组,法国蒙蒂尼勒布勒托讷,5 MRC 全球传染病分析中心,伦敦帝国理工学院公共卫生学院,英国伦敦,6 普林斯顿大学生态与进化生物学系,美国新泽西州普林斯顿,7 全球卫生系,传染病流行病学和分析 G5 部门,法国巴黎西岱大学巴斯德研究所,8 英国剑桥大学遗传学系
背景:残留的血液标本为进行血清学调查提供了成本和时间效率的替代方法。但是,由于目标人群代表性的潜在问题和/或相关元数据的可用性有限,因此通常会批评它们的使用。我们进行了范围审查,以检查在何处,何时,如何以及为何在血清学调查中使用残留的血液样本,以进行疫苗预防疾病(VPD),以及如何解决潜在的选择偏见。方法:审查遵循首选的报告项目,以进行系统评价和荟萃分析扩展,以进行范围审查(Prismascr)。我们通过PubMed,Scopus,Embase,Cochrane和WHO IRIS数据库的文献搜索确定了1999年至2022年之间发表的相关论文。使用Kobo工具箱捕获了研究数据,并使用描述性分析方法汇总了发现。结果:总共601篇文章符合标题后的包含标准,抽象筛选和全文审查。使用残留血样的最常见的VPD是Covid-19(27%),乙型肝炎E(16%),乙型肝炎B(10%),流感(9%),HPV(7%)和麻疹(7%)。大多数研究(81%)旨在估计人口水平的血清阳性。残留标本主要来自患者(55%)或献血者(36%)。解决潜在偏见的常见策略包括将结果与已发表的估计值进行比较(78%)和进行分层分析(71%)。但是,该评论强调了研究人员如何分析和报告残留标本的使用的矛盾。结论:残留的血液标本被广泛用于血清阳性研究中,特别是在快速估计至关重要的新兴疾病暴发期间。为了解决这些差距,我们提出了一组建议,以改善使用残留标本对血清学调查的分析,报告和道德考虑。
1。Numecan Institute(营养,代谢和癌症),Chu Rennes,Univ Rennes,Inserm,Inrae,umr_a 1341,UMR_S 1317,F-35000 Rennes,法国2。 雷恩大学医院,临床和法医毒理学实验室,F-35033 Rennes 3。 La Timone大学医院药代动力学和毒理学实验室,264 Rue Saint Pierre,13385 Marseille Cedex 5,法国4。 AIX Marseille University,Inserm,Ird,Sesstim,《健康与医疗信息处理》,法国马赛的经济和社会科学5。 雷恩大学医院,法国Rennes F-35033药房。Numecan Institute(营养,代谢和癌症),Chu Rennes,Univ Rennes,Inserm,Inrae,umr_a 1341,UMR_S 1317,F-35000 Rennes,法国2。雷恩大学医院,临床和法医毒理学实验室,F-35033 Rennes 3。 La Timone大学医院药代动力学和毒理学实验室,264 Rue Saint Pierre,13385 Marseille Cedex 5,法国4。 AIX Marseille University,Inserm,Ird,Sesstim,《健康与医疗信息处理》,法国马赛的经济和社会科学5。 雷恩大学医院,法国Rennes F-35033药房。雷恩大学医院,临床和法医毒理学实验室,F-35033 Rennes 3。La Timone大学医院药代动力学和毒理学实验室,264 Rue Saint Pierre,13385 Marseille Cedex 5,法国4。AIX Marseille University,Inserm,Ird,Sesstim,《健康与医疗信息处理》,法国马赛的经济和社会科学5。雷恩大学医院,法国Rennes F-35033药房。雷恩大学医院,法国Rennes F-35033药房。
超快泵和探针脉冲的时间分辨光发射是一种具有广泛应用潜力的新兴技术。实时记录非平衡电子过程,化学反应中的瞬态状态或电子和结构动力学的相互作用为未来的研究提供了有趣的机会。将价值波段和核心水平光谱与用于电子,化学和结构分析的光电子衍射相结合,需要少数10 fs的软X射线脉冲,其中大约10 MeV光谱分辨率,目前可在高复兴速率的频率射击器激光器下可用。我们已经构建并优化了在Flash/pg2上委托使用的多功能设置,该设置将自由电子激光功能和用于光发射研究的多维录制方案结合在一起。我们使用带有飞行时间记录的全场成像动量显微镜作为以空前效率(k x,k y,e)参数空间(k x,k y,e)映射的检测器。我们的仪器可以在几个EV的结合能量范围内成像最多7Å-1直径的全表面布里渊区,同时解决约2.5×10 5数据素体。在36.5 eV和109.5 eV的光子能量下测量的范德华半导体WSE 2中使用超快激发态动力学