Gasser E. Hassan 教授,埃及科学研究与技术应用城(SRTA-City)机械工程与能源副教授。2011 年获英国利兹大学能源与资源工程流体力学(CFD)博士学位。他是联合国工业发展组织(UNIDO)太阳能与热能效率审计认证顾问、埃及科学研究与技术学院(ASRT)院士、埃及未来研究与风险管理委员会(ASRT)秘书、埃及水与能源协会(EWE)主席、埃及亚历山大大学、阿拉伯科学技术学院和法罗斯大学机械工程系兼职教授。他正在领导或参与不同的国家和国际研究项目。
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
上皮可塑性,上皮细胞改变表型的能力,是一种令人着迷的现象,已被广泛研究了数十年。最常见的上皮可塑性是指上皮和间质表型之间的转化,称为上皮to-to-Emespoodymal Transition(EMT)和间质向上皮到上皮过渡(MET)。EMT和MET都是胚胎发育,组织对损伤的反应,例如炎症,修复和癌症的常见特征。收集了一系列原始研究文章和研究报告,以解决人类和其他模型系统中上皮可塑性,其区分和功能的迷人和复杂状态。上皮到间充质转变(EMT)已经过经典定义为一种发育程序,它在许多器官的早期胚胎图案中发挥了作用,其特征是上皮细胞失去细胞对细胞粘附,上皮紧密连接点和向脉炎。进化上,EMT过程使生物可以通过从原始外胚层产生中胚层的间充质细胞来获取更多复杂的结构。EMT是组织和器官的生理修复和病理纤维化的基本过程。最近,人们已经认识到,EMT在促进促肿瘤微环境的创造方面也起着至关重要的作用,从而促进肿瘤发生和转移。细胞间连接(尤其是紧密连接)的重组是肿瘤进展过程中EMT过程的关键事件。在本期内Neyrinck-Leglantier等。发表了他们的研究工作,调查了紧密的连接蛋白齐路coccludens-1(ZO-1)如何参与调节肿瘤微环境。使用体外和体内模型都证明,将膜相关的ZO-1迁移到细胞核区室可以调节促炎性趋上趋化因子的分泌,因此
今天的数字计算机基于内存和计算的分离。因此,必须将数据从存储位置不断传输到传统计算体系结构中的计算位置,反之亦然,从而导致高潜伏期和能量能量。[1-3]一个为某些应用而克服这种所谓的von Neumann瓶颈的潜在概念是神经形态计算体系结构的发展,该构建体的目的是模仿人脑中的信息处理。[4-7]在生物学中,信息处理发生在庞大的神经元和突触网络中,而没有计算和记忆之间的身体分离,[8]在感觉处理,运动控制和模式识别等任务中产生了令人印象深刻的性能,[9]同一时间消耗较小的能量,比数字计算机要少的数量计算机需要进行类似的任务。[5,6,10,11]
氮化铝 (AlN) 具有宽带隙 (6.2 eV)、高介电常数 (k B 9)、高电阻率 (r B 10 11 –10 13 O cm) 和高热导率 (2.85 W K 1 cm 1 )1 等特性,是微电子和光电子领域的重要材料。由于 AlN 具有压电特性,因此也可用于微机电系统 (MEMS 设备)。2 非晶态 AlN 有多种用途,例如用作钝化层和介电层。3 AlN 薄膜通常通过反应溅射、4 化学气相沉积 (CVD)、5 反应分子束外延 (MBE) 6 和原子层沉积 (ALD) 沉积。AlN 的 ALD 在需要坚固保护层的应用方面引起了广泛关注,例如开发耐腐蚀、绝缘和保护涂层。7
b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
bio:DirkMüllmann在Osnabrück大学学习法律,并在杜塞尔多夫高等区域法院完成了法律书记。他正在法兰克福大学歌德大学攻读博士学位。他的研究重点是数据保护和IT安全问题。他曾在波恩的联邦数据保护和信息自由(BFDI)的法律事务部担任法律顾问,并担任Spiecker Gen教授法兰克福大学法兰克福的公法,信息法,环境法,环境法和行政科学主席的研究助理。 döhmann。
M.B.A。 em 2年(4 - SEMS)20,000/ - 最低学士学位。 3年的持续时间,除了东方语言和TG ICET中的资格 - 2024年或pgrrcde的入学考试。 M.C.A. em 2年(4 - SEMS)15,000/ - BCA/b.sc/b.com/b.com/b.a通过10+2级的数学或TG ICET中的毕业和资格,或者在TG ICET中进行资格,或pgrrcde的入口测试,OU。 M.A. ( Hindi/Urdu/Telugu/Sanskit/English) - 2 yrs (4 – Sems) 8,000/- to 9000/- For MA(Hindi)-Graduate studied in Hindi medium till10 th / SSC or Hindi as a subject in Degree, for MA(Urdu)- Graduate studied in Urdu medium till 10 th / SSC or Urdu as a subject in Degree &for MA(泰卢固语/梵语/英语) - 任何毕业生M.A. (哲学/社会学/公共人员管理。/公共管理//经济学/历史)M.B.A。em 2年(4 - SEMS)20,000/ - 最低学士学位。3年的持续时间,除了东方语言和TG ICET中的资格 - 2024年或pgrrcde的入学考试。M.C.A. em 2年(4 - SEMS)15,000/ - BCA/b.sc/b.com/b.com/b.a通过10+2级的数学或TG ICET中的毕业和资格,或者在TG ICET中进行资格,或pgrrcde的入口测试,OU。 M.A. ( Hindi/Urdu/Telugu/Sanskit/English) - 2 yrs (4 – Sems) 8,000/- to 9000/- For MA(Hindi)-Graduate studied in Hindi medium till10 th / SSC or Hindi as a subject in Degree, for MA(Urdu)- Graduate studied in Urdu medium till 10 th / SSC or Urdu as a subject in Degree &for MA(泰卢固语/梵语/英语) - 任何毕业生M.A. (哲学/社会学/公共人员管理。/公共管理//经济学/历史)M.C.A.em 2年(4 - SEMS)15,000/ - BCA/b.sc/b.com/b.com/b.a通过10+2级的数学或TG ICET中的毕业和资格,或者在TG ICET中进行资格,或pgrrcde的入口测试,OU。M.A.( Hindi/Urdu/Telugu/Sanskit/English) - 2 yrs (4 – Sems) 8,000/- to 9000/- For MA(Hindi)-Graduate studied in Hindi medium till10 th / SSC or Hindi as a subject in Degree, for MA(Urdu)- Graduate studied in Urdu medium till 10 th / SSC or Urdu as a subject in Degree &for MA(泰卢固语/梵语/英语) - 任何毕业生M.A.(哲学/社会学/公共人员管理。/公共管理//经济学/历史)
中研院特聘研究员🖃 应科中心主任Distinguished Research Fellow and Director of the Research Center for Applied Sciences, Academia Sinica 水利及海洋工程学系45 肄studied in the Department of Hydraulic and Ocean Engineering in 1956
Table I Baseline characteristics of the sample studied Parameter Value Boys 60 (54.5) Chronological age at admission (mo) a 11.55 (5.7) Weight at admission (kg) a 5.55 (1.4) Length at admission a 67.10 (7.3) MUAC at admission a 10.62 (0.5) Severe stunting 41 (37.3) MeDQ a 60.91 (25.5) Mental delay 39 (35.5)MODQ A 70.71(23.8)电动机延迟71(64.5)农村住宅75(68.2)核家族56(50.9)
