•设计了一种以自定义目标函数为指导的基于优化的方法,以学习stylegan2的潜在空间中的歧管,与输出图像中的局部变化相对应(例如歧管内的潜在向量仅改变面部同一图像的口区域)
正如乔纳斯·拉尔森(Jonas Larsen)所说:“旅游和摄影是现代双胞胎。” [3]将AI作为另一种现代性添加到方程式中,从看不见的角度来看。在AI艺术中,数据集具有至关重要的价值:它决定了美学和概念。因此,当涉及该项目的数据集创建过程时,我们从Flickr下载了Lanzarote富有想象力的地理位置的所有循环现实(允许许可证),将它们分为两个:风景和旅游业。然后,在仔细准备每个图像池之后,我们应用了AI算法StyleGAN2,该算法生成了新图像(图1,2,3)。因此,艺术项目由两个视频组成,这些视频代表着使用StyleGan2的AI生成图像的潜在图像的潜在空间的旅程。后来,图像被组成为潜在的插值,这些插值采用了一种平稳的渐进视频形式。这两个视频是在StyleGAN2训练的模型的潜在空间中随机步行,创建了电影合成空间。通过从由静态图像组成的数据集中获得的融化的学习液体学习,视听作品显示了动画图像。视频从点到点,通过潜在空间的运动产生新的视图和含义空间。在视频响应视觉材料以完成艺术作品后生成视频后创建了音频。
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
有一个广泛的说法,即甘斯很难训练,文献中的甘恩建筑充满了经验技巧。我们提供了反对这一主张的证据,并在更原则的管理中建立了现代的基线。首先,我们得出了一个行为良好的正规相对论gan损失,该损失解决了以前通过一袋临时技巧解决的模式掉落和非连面问题。我们通过数学分析我们的损失,并证明它可以承认本地融合保证,这与大多数现有的相对论损失不同。第二,我们的新损失使我们能够丢弃所有临时技巧,并替换与现代体系结构共同使用的过时的骨架。以stylegan2为例,我们提出了简化和现代化的路线图,从而导致新的MINI-MILIST基线-R3GAN。尽管很简单,但我们的方法超过了FFHQ,ImageNet,Cifar和堆叠的MNIST数据集的StyleGAN2,并与最先进的gan和扩散模型进行了比较。
图1。stylitgan在Stylegan的样式空间(W +)中标识方向向量(D I),当将其添加到W +样式代码中时,可以有效地修改生成的图像的照明,同时保留其几何形状和反击。此过程消除了每位图像搜索或模型微调的需求。第一列显示了从stylegan2生成的图像,随后的列说明了相同的场景,每个场景都使用特定方向进行重新保存。这些重新指示(D I)是通过向前选择方法得出的,可确保多样性并避免挑选樱桃。定向效应在不同的场景中保持一致:例如,D 1激活橙色的床头灯,D 2不太强烈的白色灯光灯,D 3引入了窗户的强烈方向光,依此类推,表现出多样化的型号的固定性功能。
基于深度学习的图像生成方法已被广泛用于克服数据不足。在医疗领域也是如此,数据短缺问题经常发生。在本研究中,我们提出了多模态脑肿瘤磁共振成像(MRI)生成框架,称为解缠结潜在扩散模型(DLDM),以解决医学成像中的数据不足问题。我们训练一个自动编码器,将多模态 MRI 图像的特征解缠结为模态共享和模态特定表示。通过利用从自动编码器学到的特征解缠结,我们能够训练一个可以生成模态共享和模态特定潜在向量的扩散模型。我们用 clean-FID 和改进的准确率和召回率评估了我们的方法。将结果与基于 GAN 的模型 StyleGAN2 进行了比较。关键词:生成、多模态、MRI、特征解缠结、扩散模型。
深度学习技术越来越多地用来以高准确性对医学成像数据进行分类。尽管如此,由于训练数据通常有限,这些模型可能缺乏足够的可推广性来预测不同领域中产生的未见测试数据,并具有可观的性能。本研究的重点是甲状腺组织病理学图像分类,并研究了只有156个患者样品训练的生成对抗网络[GAN]是否可以产生高质量的合成图像以充分增强训练数据并改善整体模型的可推广性。利用stylegan2方法,生成网络生成的图像产生了频率创造距离(FID)分数为5.05的图像,匹配的最新gan会导致具有可比数据集尺寸的非医疗域。当对从三个单独的域中采购的外部数据进行测试时,使用这些GAN生成的图像对训练数据进行培训数据增加了模型,将总体精度和AUC分别提高了7.45%和7.20%,而基线模型则分别提高了7.45%和7.20%。最重要的是,在训练有素的病理学家进行分类时,在少数群体图像,肿瘤亚型上观察到了这种绩效改善。
生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括变异自动编码器(VAE),生成对抗网络(GAN),变形金刚,变形金刚,正常流量,基于能量的模型,基于能量的差异模型,以及基本的架构架构。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务求解到诸如dall.e 2,Imagen和稳定扩散等多模型模型中,这本书还探讨了生成AI的未来及其具有竞争优势的潜力。生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括VAE,gans,gans,transformers,“标准化流量”,“基于能量”的模型,基于能量的模型以及扩散的扩散模型。这本书以基本的深度学习概念和高级体系结构为基本的深度学习概念开始。和概率理论,正如某些模型使用数学符号描述的那样。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务解决成多模型,例如Dall.e 2,Imagen和稳定的扩散,这本书还深入研究了生成AI的未来及其具有竞争优势的潜力。要开始使用Python,请访问Learningpypython.org获取免费资源,这些资源将帮助您发展足够的知识来与本书中的示例合作。对线性代数(矩阵乘法等)有牢固的了解也很重要另外,请确保您有一个可以从GitHub存储库中运行代码示例的环境。不用担心您是深度学习的新手 - 您不需要昂贵的硬件即可像GPU一样开始培训模型。实际上,在投资硬件之前了解基础知识更为重要。本书将向您展示如何在自己的数据上培训自己的生成模型,而不是依靠预训练的模型。我们将从第一原则中深入研究这些模型的架构和设计,因此您可以完全了解它们如何使用Python和Keras进行编码。科学家们正在破解代码以复制一些最具开创性的生成深度学习模型,例如变化自动编码器,生成的对抗性网络(GAN),编码器模型和世界模型。在本文中,专家David Foster带领读者从深度学习的基础上到彻底改变该领域的出血 - 边缘算法的旅程。通过分享技巧和技巧,您将深入了解如何优化模型以提高性能和创造力。动手实践实用的GAN示例,例如Cyclegan for Style Transfer和Musegan for Music Generation。学习如何制作复发性生成模型来生成文本,并使用注意机制改进它们。探索生成模型如何授权代理在加强学习框架内处理复杂的任务。最后,深入研究了基于变压器的模型,例如Bert和GPT-2,以及Progan和StyleGan等图像生成技术。
