对石墨烯的研究引起了极大的兴趣[1-3],因为A. Geim等人的实验实现了名为石墨烯的二维形式。在2004年[4]。该材料密集地包装成蜂窝结构,该结构由两个不同的三角形sublattices制成,由A和B标记。石墨烯的低纤维带结构是无间隙的,没有质量的手性载体。因此,这些异常结构是特殊现象的根源,例如异常量子大厅的影响[5-7],最小电导率[5,6]和klein tuneling [2,8]。有趣的是,克莱因悖论描述了一种现象,即相对论电子可以通过高屏障与常规隧道形成鲜明对比。这些现象有望在未来的纳米电子设备中发挥重要作用。
Table 1: 1L-G/1L-hBN stacking configurations and corresponding equilibrium separations, BEs, and breathing-mode (out-of-plane zone-center optical phonon) frequencies, obtained by fitting Equation 1 to DMC energy data obtained with both layers forced to adopt the lattice constant of G. C, B, and N atoms are shown as black, orange, and green balls, respectively.六边形sublattices A和B在配置中标记。I.偏移ℓ是从相应的B-N键中心的每个C-C键中心的平面位移。a 1和2是晶格向量,如图1b所示。由于在每种情况下使用相同的DMC 1L能量,因此不同配置的DMC平衡是相关的;因此,差异比绝对BES上的误差线所建议的更精确。相对BES的错误显示在表2中。
摘要:分子和材料的结构决定了它们的功能。了解结构和功能关系是分子和材料科学的圣杯。然而,尽管努力数十年,但具有理想功能的分子和材料的合理设计仍然是一个巨大的挑战。一个主要障碍是缺乏将特定函数归因于特定功能的固有数学特征。这项工作引入了持久的路径拓扑(PPT),以有效地表征从功能单元中提取的定向网络,例如宪法异构体,顺式 - 反式异构体,手性分子,Jahn- teller- teller异构主义和高素质合金催化剂。路径同源性(pH)理论用于破译镜像对称sublattices的作用,从而阻碍了无定形固体中周期性单位细胞的形成。拓扑扰动分析(TPA)提出揭示血液凝结系统中的关键目标。所提出的拓扑工具可以直接应用于分子和材料科学的系统生物学,法学科学,拓扑材料以及机器学习研究。
日期:2024年10月10日摘要在LA 3 Ni 2 O 7中发现高温超导性,在压力下发现LA 4 Ni 3 O 10引起了广泛的关注。在此,我们报告了有关在各种压力下的结构,磁性和电阻的演变的系统研究。pr 4 ni 3 O 10-δ分别在约158 K和4.3 K处表现出在Ni和Pr sublattices上的密度波变变,并且可以通过压力逐渐抑制密度波。从单斜p 2 1 / a空间群到四方I 4 / mmm的结构转换发生在20 GPA左右。明显的磁场依赖性的电阻下降被观察到高于20 GPA的压力,表明PR 4 Ni 3 O 10-δ多晶样品中超导性的出现。在PR 4 Ni 3 O 10-δ中发现超导性的特征扩大了镍超导体的家族,并提供了一个新的平台,用于研究镍盐ruddlesden-Popper阶段中超导性的机理。1简介
摘要:将低能状态的集成到自下而上的石墨烯纳米纤维(GNRS)中是一种强大的策略,用于实现具有量身定制的纳米电子带量身定制的电子带结构的材料。低能零模型(ZMS)可以通过在石墨烯的两个sublattices之间产生不平衡来引入纳米仪(NGS)。这一现象是由[n]三角形(n∈)的家族举例说明的。在这里,我们证明了[3]三角形 - gnrs的合成,这是一种由五元环连接的[3]三角形链的grigular一维链(1D)链。在相邻[3]三角形上的ZM之间的杂交导致狭窄的带隙,E e g,exp〜0.7 eV的出现,以及使用扫描隧道谱图对实验验证的拓扑结束状态。紧密结合和第一原理密度功能理论计算局部密度近似值证实了我们的实验观察结果。我们的合成设计利用了单体构建块的选择性在表面上的从头到尾耦合,从而实现了[3]三角形 - gnrs的区域选择性合成。详细的从头算理论提供了对地面自由基聚合机制的见解,揭示了Au-C键形成/断裂在推动选择性中的关键作用。■简介
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
摘要:将低能状态的集成到自下而上的石墨烯纳米纤维(GNRS)中是一种强大的策略,用于实现具有量身定制的纳米电子带量身定制的电子带结构的材料。低能零模型(ZMS)可以通过在石墨烯的两个sublattices之间产生不平衡来引入纳米仪(NGS)。这一现象是由[n]三角形(n∈)的家族举例说明的。在这里,我们证明了[3]三角形 - gnrs的合成,这是一种由五元环连接的[3]三角形链的grigular一维链(1D)链。在相邻[3]三角形上的ZM之间的杂交导致狭窄的带隙,E e g,exp〜0.7 eV的出现,以及使用扫描隧道谱图对实验验证的拓扑结束状态。紧密结合和第一原理密度功能理论计算局部密度近似值证实了我们的实验观察结果。我们的合成设计利用了单体构建块的选择性在表面上的从头到尾耦合,从而实现了[3]三角形 - gnrs的区域选择性合成。详细的从头算理论提供了对地面自由基聚合机制的见解,揭示了Au-C键形成/断裂在推动选择性中的关键作用。■简介
是由高t C镍超导体最近快速进步的动机,我们全面研究了交替的双层三层式镍7 ni 5 o 17的物理特性。该材料的高对称阶段,没有氧气八面体的倾斜,在环境条件下不稳定,而是在高压下变得稳定,在高压下出现了由d 3 z 2-r 2状态组成的小孔袋γ0。在我们以前针对TriLayer LA 4 Ni 3 O 10的工作中确定了这个口袋对于发展超导性很重要。此外,使用随机相近似计算,我们在压力下找到了高对称相的领先S±配对状态,其配对强度与以前在BiLayer La 3 Ni 2 O 7化合物中获得的配对强度相似,这表明具有相似或更高的超导导过渡温度t c。此外,我们发现驱动该配对状态的系统中的主要磁波动在平面内以及顶部和底部三层和双层均匀的平面之间具有抗铁磁结构,而中间三层层则是磁性脱耦的。
是由最近提出的镍3 ni 2 o 7交替交替的单层三层堆叠结构的动机,我们使用从头开始和随机相近似技术全面研究了该系统。我们的分析揭示了这种新颖的LA 3 Ni 2 O 7结构与其他Ruddlesden-Popper镍超导体(例如类似的电荷转移差距值和E G轨道的轨道选择性行为)之间的相似性。压力主要增加了ni g波段的带宽,这表明这些E G状态的巡回特性提高了。通过将细胞体积比0从0.9更改为1.10,我们发现La 3 Ni 2 O 7中的双层结构总是比单层三层堆叠LA 3 Ni 2 O 7具有低的能量。此外,我们观察到从三层到单层sublattices的“自我兴奋剂”效应(与整个结构的每个位置的平均每个位置的1.5电子相比,相比之下),通过总体电子掺杂,这种效果将增强。此外,我们发现了一个限制在单层的d x 2 -y 2波配对状态。由于单层之间的有效耦合非常弱,因此由于中间的非耐受性三层,这表明该结构中的超导过渡温度t c应远低于双层结构中。
官能化石墨烯的有前途的方法之一是将杂原子掺入碳SP2晶格中,因为事实证明,它是一种可控制地调整石墨烯化学的有效且通用的方法。我们提出了与B掺杂剂选择性掺杂石墨烯的独特无污染方法,在标准的CVD生长过程中,它们从大部分Ni(111)单晶体中创建的储层中掺入一层,从而导致清洁,多功能和有效的方法用于创建B-poped Chapeene。我们结合了实验性(STM,XPS)和Theo Retical(DFT,模拟的STM)研究,以了解替代性B DOP蚂蚁的结构和化学性质。与先前报道的FCC位点中的替代B一起,我们首次观察到另外两个缺陷,即在顶部位点中替代B,而在八面体地下位点中的间隙B。广泛的STM在遗迹中证实存在于经过准备的B掺杂的Gra Phene中B掺杂剂的低浓度区域的存在,表明硼龙掺入不均匀。在两个替代部位之间,在低浓度的B掺杂区域中没有观察到偏好,而在高B浓度区域中,优先选择了Sublattices之一,以及缺陷的对准。这将在生长的B掺杂石墨烯中产生不对称的sublattice掺杂,从理论上讲,这将导致显着的带隙。