我们在这项工作中介绍了Emle-Engine软件包 - 用于混合机器学习潜力 /分子力学(ML / MM)动力学模拟的新机器学习嵌入方案的实施。该软件包是基于一种嵌入方案,该方案使用基于物理的电子密度模型和诱导模型,并具有少数可调参数,这些参数衍生在要嵌入的子系统的真空属性中。该方案完全独立于真空电位,仅需要机器学习子系统原子的位置以及分子力学环境的位置和部分电荷。这些特征允许现有QM/mm软件中使用EMLE引擎。我们证明实施的静电机学习嵌入方案(命名EMLE)在增强的采样分子动力学模拟中是稳定的。通过计算水中丙氨酸二肽的自由能表面,具有两个不同的ML真空电位和两个嵌入模型的ML选项,我们测试了EMLE的影响。与参考DFT/MM表面相比,EMLE嵌入显然优于基于固定部分电荷的MM。与MM嵌入相比,通过电子密度的构型依赖性和感应能量的包含,通过电子密度的构型依赖性和感应能量的包含来导致自由能表面平均和最大误差的系统降低。
在这项工作中,我们为2D代码开发了一个通用张量网络解码器。具体而言,我们构成了一个解码器,该解码器近似于2D稳定器和子系统代码,但受Pauli噪声的影响。对于由N量表组成的代码,我们的解码器的运行时间为O(n log n +Nχ3),其中χ是近似参数。我们通过在三种噪声模型下研究四类代码,即规则的表面代码,不规则的表面代码,子系统表面代码和颜色代码,在钻头滑唇,相移,相动式噪声下,通过研究四类代码来证明该解码器的功能。我们表明,我们的解码器所产生的阈值是最新的,并且在数值上与最佳阈值一致,这表明在所有这些情况下,张量网络解码器很好地近似于最佳解码。对我们解码器的小说是任意2D张量网络的有效有效的近似收缩方案,这可能具有独立的关注。我们还发布了该算法的实现,作为独立的朱莉娅软件包:sweepContractor.jl [1]。
2 理论背景 6 2.1 量子计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 9 2.2.1 退相干和无退相干子空间 . ... . ... . ... . 9 2.2.2 子系统和无噪声子空间和系统 . ... . ... . 10 2.2.3 集体退相干 . ... . ... . ... . ... . ... . . . . 11 2.3 三量子比特 DFS 代码 . ... . ... . ... . ... . ... . ... . . . . 11 2.4 四量子比特无噪声子系统代码 . ... . ... . ... . ... . ... . . . . 13 2.5 Trotter 方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16
20 世纪 80 年代初,在海上靶场和空域警戒区 W-133/W-134 和 W-157A/W-l58C 进行了广泛的空战机动 (ACM) 训练,使用训练导弹和机枪对付无人机和拖曳目标。目标并未模拟真实的空战条件,即目标采取高性能飞机能够采取的所有规避行动。这些不是仪表空域,因此训练受到限制,因为无法进行评分或任务后重建。FY-86 MILCON 项目 P210(2630 万美元)授权在佐治亚州近海建造八座塔楼,以使战术机组战斗训练系统 (TACTS) 能够在从海平面到 60,000 英尺的空战训练演习期间准确监视和控制飞机。 TACTS 包括四个主要子系统:飞机仪表子系统 (AIS)、跟踪仪表子系统 (TIS)、控制和计算子系统 (CCS) 以及显示和汇报子系统 (DDS)。FPO-1 负责 CTACTS 海上塔的设计和建造,海军航空系统司令部提供设施要求。FPO-1 与 Brown & Root Development Inc. (B&R) 签订了合同,担任主要 AE。B&R 使用 Ocean Weather 进行气象和海洋工作,使用 McClelland Engineers, Inc. 进行地球物理和岩土工作。此外,FPO-1 还与 Earl and Wright Consulting Engineers 签订了合同,他们为该项目提供设计质量保证 (DQA)。无人塔将位于南卡罗来纳州查尔斯顿以南约 80 英里处,北乔治亚州以东约 60 英里处,如下图所示。有两个主站,配有共置遥控器和六个远程站。其中一个远程结构除了支持 TIS 远程电子设备(中继/远程)外,还支持微波中继设备。主结构支持两个抛物面天线、一个用于电子设备的防水/防风雨封闭区域、约 24,000 磅的电池和相关设备、一个独立的混合太阳能和风能系统、带燃料储存的备用柴油发电机组和一个直升机场。中继/远程结构支持两个抛物面天线、电池、发电机和直升机场。远程结构支持两个抛物面天线、光伏板、电池和一个直升机场。最终设计于 1985 年 8 月完成,塔的配置如下所示。八个海洋结构中的每一个都由管状钢空间框架模板、上部结构和桩组成。桩的总长度超过 6,000 英尺。所有八个平台的总钢吨位约为 7,000 吨。
WiDE 在线应用程序从船上安装的 WiDE 接收数据,并提供特定船舶和船队发动机状态的清晰视图,进一步支持船上船员。用户还可以查看详细的船舶和发动机数据,包括发动机转速和性能、子系统状态和已识别的发动机故障。该应用程序还可以可视化在可选时间段内识别的发动机故障。它适用于计算机、平板电脑和智能手机。
•“DER 是小型发电或储能技术(通常为 1 千瓦至 10,000 千瓦),可以替代或增强传统电力系统。这些技术可以位于电力公司的配电系统、电力公司的配电系统的子系统或客户电表后面。它们可能包括电力存储、间歇性发电、分布式发电、需求响应、能源效率、热存储或电动汽车及其充电设备。”
简介。由于Lorentz的不变性,信息的传播永远无法表达光速。实际上实现此速度的任何粒子都必须是无质量的,并且当能量受到限制时,可以将较低的速度限制放在巨大的颗粒上。在非依赖性系统中有效地有限的速度,相互作用的局部性构成了出现的约束[1]。在这封信中,我们研究了本地相互作用的量子电路中的纠缠速度限制(量子信息的度量)。随着光速,事实证明,达到最大传播纠缠速度的局部统一相互作用(或“门”)具有特殊的形式。在全球量子淬火中存在自然的纠缠速度概念[2-4]。当短程纠缠状态|通常,单位演变为单位进化,(小)子系统Q会热化。足够长的时间后,子系统Q的纠缠(或von Neumann)熵S(Q)将饱和到其平衡值。为了设定舞台,我们将具有局部希尔伯特空间维度Q的一个有限的晶格QUDIT系统置于一个维度上,并将半限定区域Q视为子系统。我们假设统一的进化可以使状态升温| ψ0⟩至有限温度。在达到平衡的途中,Q的von Neumann熵通常在t [5-7]中线性生长:
系统和系统的系统 系统有许多定义。INCOSE 将系统定义为实现既定目标的一组集成元素。这些元素包括产品(硬件、软件和固件)、流程、人员、信息、技术、设施、服务和其他支持元素(INCOSE,2006 年)。Buede 将系统定义为“一组组件(子系统、部分),它们共同作用,通过完成一组任务来实现一组共同目标”(Buede,2000 年)。为了本文的目的,我们将系统视为能够执行一组任务以满足使命或目标的东西。例如,汽车可以将人从一个地方移动到另一个地方,它是一个系统。汽车上的发动机本身无法实现目标。从汽车上拆下并放在地上后,发动机什么也不做,直到它与系统的其他部分(例如燃料输送元件)结合,才能与其他部件协同工作,实现将个人移动到另一个地方的目标。这并不是为了降低发动机的复杂性或重要性。它只是一个更广泛系统的一个子系统。燃料输送子系统也是如此。它是汽车的重要组成部分,但只是汽车中的一个子系统。
