未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
甜菜根叶子由于缺乏足够的知识,尤其是其营养和作为人类食物的营养价值而被用作不足。甜菜叶富含酚类化合物,维生素和铁(Kaushik和Kavita,2020年,Lorizola等,2018)。它们在收获期间被定义为二级产品(废物)(Fernandez等,2017)。甜菜中的副产品几乎构成了整个植物的一半(Bengardino等,2019; Pellegrini和Ponce 2020; Ebrahimi等,2022)。甜菜根叶是生物活性化合物的丰富来源,例如脂肪酸,矿物质(Biondo等人2014),蛋白质(Akyüz和Ersus 2021)和多酚(Nutter等,2020)。在这些化合物中,多酚是通过抗菌,抗真菌,抗炎和抗肿瘤特性改善人类健康的强大物质。这些化合物是一组二级代谢产物,该代谢物在具有一个或多个酚类环与附着的羟基的植物中合成。它们被认为是天然抗氧化剂,通过延迟脂质氧化来提高食品质量(Ebrahimi和Lante 2021; Kolev,2022)。
摘要:这项研究的目的是评估甘蔗基因型在植物和拉通甘蔗的反复洪水下的洪水耐受性。对照和重复的洪水条件。由于洪水泛滥,甘蔗身高增加并分配了折痕。洪水减少了甘蔗产量和商业甘蔗糖(CC)的产量,以及甘蔗汁中极化(POL),纯度和CC的百分比。甘蔗洪水的耐受性因基因型而异,KPS01-4-29和SP94-2-483具有最高的洪水耐受性指数,KK07-037,K95-84,KK07-599在洪水条件下的产量最高。此外,在洪水泛滥的条件下,在甘蔗中观察到屈服特征,拐杖身高和甘蔗数之间的关系(r = 0.45*至0.92 **)。由于我们的研究,可以选择耐洪水的甘蔗基因型。用于洪水耐受性的甘蔗基因型选择可能包括甘蔗高度和甘蔗数字作为间接特征。
生产菌株的遗传稳定性和代谢稳健性是通过工业规模微生物发酵生产生物基产品的关键标准之一。本文在一种工业乙醇生产菌株酿酒酵母中探索了这些标准,该菌株能够通过染色体整合几个关键基因拷贝来共同发酵 D-木糖和 L-阿拉伯糖与葡萄糖,从而利用这些戊糖 (C5) 糖。在模拟工业环境中长期发酵的受控生物反应器中使用批量顺序培养,发现该菌株早在第 50 代及以后就表现出 D-木糖和 L-阿拉伯糖消耗的显著波动。这些波动似乎与在整个连续批量培养中出现的频率低于 1.5% 的少数低消耗 C5 糖克隆无关,这是由于编码 C5 糖同化酶的转基因拷贝数减少造成的。此外,富含低或高 RAD52 表达的亚群(其表达水平据报道与同源重组率成正比)未表现出 C5 糖同化缺陷,这表明其他机制可能是造成转基因拷贝数变异的原因。总体而言,这项研究强调了工业酵母中存在遗传和代谢不稳定性,尽管在我们的条件下这种不稳定性并不大,但在更恶劣的工业条件下可能会更加有害,从而导致生产性能下降。
在不断变化的气候情景下,草原保护和发展已成为赋予其生态系统服务功能可持续性的当务之急。通过有针对性地对本地草种进行基因改良,可以有效实现这些目标。据我们所知,关于在天然和半天然草原中普遍存在的非栽培草种(柳枝稷、野生甘蔗、草原大麦、狗牙根草、中国银草等)的基因编辑的研究成果非常少。因此,为了探索这一新颖的研究方面,本研究旨在将用于改良栽培草类尤其是甘蔗的基因编辑技术也用于非栽培草类。我们建议将甘蔗作为非栽培草类基因改良的典型作物的假设是,与其他栽培草类(水稻、小麦、大麦、玉米等)相比,甘蔗的多倍体和非整倍体导致基因编辑的复杂性。另一个原因是,考虑到高度的遗传冗余,已经开发和优化了甘蔗(x = 10 – 13)的基因组编辑方案。因此,据我们所知,本综述是第一项客观评估 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 技术在甘蔗中的概念和功能的研究,评估其高度多功能性、目标特异性、效率、设计简单性和多路复用能力,以探索针对生物和非生物胁迫对非栽培禾本科植物进行基因编辑的新研究视角。此外,甘蔗基因编辑面临的巨大挑战导致了 CRISPR 工具的不同变体(Cas9、Cas12a、Cas12b 和 SpRY)的开发,其技术性也得到了严格评估。此外,还强调了该技术在非栽培禾本科植物基因编辑过程中可能出现的不同局限性。
甘蔗厂被认为是通过增强的风化(EW)具有很高的二氧化碳去除(CDR)的潜力,但尚未定量评估。这项研究的目的是1)通过EW评估各种甘蔗厂灰分的CDR电位,以及2)研究土壤条件和铣削灰分对CDR的影响。这是通过表征澳大利亚五台灰烬的物理和化学性质并使用一维反应性传输模型模拟风化的。该模型被列为模拟,以模拟100吨/公顷的湿灰(47 - 65%水)或压碎玄武岩的风化,在各种土壤pH和二氧化碳二氧化碳部分压力(PCO 2)的各种组合下(PCO 2)。在两级阶乘设计中进行了灵敏度分析,以测试pH,pH缓冲,材料表面积,浸润速率,植物摄入养分,有机物阳离子阳离子交换表面和PCO 2对建模CDR的影响。磨坊灰分的模拟CDR明显小于玄武岩(p <0.001),但在灰烬之间大多没有显着差异(p> 0.05)。铣削灰分的风化已累积地去除0.0 - 4.0 t CO 2 /ha(0.00 - 0.040 t CO 2 /t湿灰),类似于文献中建模的一些玄武岩和橄榄石。在大约5年内实现了磨坊灰分的理论最大CDR(基于适用的可风化材料)。CDR的估计值因条件而变化。至少当初始土壤溶液pH值最低(4.5,未封闭)时,pH为6.5或更少,持续缓冲且PCO 2较低(600 ppm)。cdr也显着降低。此处量化的pH和pH缓冲的效果可以解释酸性土壤现场试验中EW的低测量CDR,并突出了对pH缓冲能力进行更现实的建模的需求。总体而言,Mill Ash通过EW表现出很高的CDR潜力,尤其是在考虑生命周期益处的情况下,尽管必须在现场进行验证。
淀粉素是胰腺产生的激素,在血糖调节和代谢稳态中起着至关重要的作用。它的功能包括减慢胃排空,抑制胰高血糖素的分泌,促进饱腹感和调节胰岛素活性。在糖尿病患者中,淀粉纤维的产生和功能受损可能导致血糖控制不良和并发症的风险增加。靶向链淀粉蛋白信号通路(例如pramlintide)的治疗性干预措施,为改善糖尿病管理和优化整体代谢健康提供了有希望的选择。进一步研究了链氨基作用的机制,可能会发现用于治疗糖尿病和相关代谢性疾病的新型治疗靶标。
咖啡酸(CA)是一种广泛用于药物和食品领域的酚酸化合物。然而,CA 的有效合成通常受限于单个微生物平台的资源。本文开发了一个跨界微生物联盟,以大肠杆菌和甘油假丝酵母为底盘,从甘蔗渣水解液中合成 CA。在上游大肠杆菌模块中,通过强化莽草酸合成途径和阻断莽草酸代谢来提高莽草酸的积累,为下游 CA 合成模块提供前体。在下游甘油假丝酵母模块中,通过增加胞质辅因子 FAD(H 2 ) 的供应来提高对香豆酸向 CA 的转化。此外,ABC 转运蛋白相关基因的过表达促进了 CA 的外排并增强了菌株对 CA 的抗性,使 CA 滴度从 103.8 mg/L 显著提高到 346.5 mg/L。随后,通过优化该跨界微生物联合体中菌株SA-Ec4和CA-Cg27的接种比例,CA产量提高至871.9 mg/L,较单培养菌株CA-Cg27提高了151.6%。最终,在5 L生物反应器中,以混合糖和甘蔗渣水解液为原料,通过优化共培养体系,获得CA产量分别为2311.6和1943.2 mg/L,较出发菌株提高了17.2倍和14.6倍。本研究开发的跨界微生物联合体为利用廉价原料生产其他芳香化合物提供了参考。
(Broccanello等人2015; Reeves等。2007)。 值得注意的是,内含子中BV_22330_orky的SNP变化(SNP183)与螺栓耐受性有关(Broccanello等人。 2015)。 有趣的是,当QB6附近的基因座被SNP183基因型取代时,观察到基因型和螺栓固定速率之间存在显着关联,这意味着QB6和SNP183之间的链接相对较近(表A1)。 SNP183处的“ T”的测序变化比“ C”更宽容(Broccanello等人。 2015)。 在本研究中,具有强螺栓耐受性的“ NK-219mm-O”表现为“ T”,而“ NK-323mm-O”具有弱螺栓耐受性的“ C.”。这种趋势与在后代线中观察到的螺栓耐受性一致。 关于基因功能,bv_22330_orky编码基质金属蛋白酶,该酶在植物生长,发育和压力反应中分泌,播放2007)。值得注意的是,内含子中BV_22330_orky的SNP变化(SNP183)与螺栓耐受性有关(Broccanello等人。2015)。有趣的是,当QB6附近的基因座被SNP183基因型取代时,观察到基因型和螺栓固定速率之间存在显着关联,这意味着QB6和SNP183之间的链接相对较近(表A1)。SNP183处的“ T”的测序变化比“ C”更宽容(Broccanello等人。2015)。在本研究中,具有强螺栓耐受性的“ NK-219mm-O”表现为“ T”,而“ NK-323mm-O”具有弱螺栓耐受性的“ C.”。这种趋势与在后代线中观察到的螺栓耐受性一致。关于基因功能,bv_22330_orky编码基质金属蛋白酶,该酶在植物生长,发育和压力反应中分泌,播放
为此,接受以下签名:电子签名,即签订合同的、指证明电子签名与特定人之间关联的虚拟文件;可由 Adobe 真实生成的数字类型;只有签名清晰可辨、不存在于图像中、没有背景且透明时,才接受亲笔签名类型。