葡萄糖反应性胰岛素输送平台对动态葡萄糖浓度波动敏感,可提供快速和长时间的胰岛素释放,在控制高血糖和避免低血糖性糖尿病方面具有巨大潜力。在这里,设计了可生物降解和电荷可切换的植物糖原纳米颗粒,能够刺激葡萄糖释放胰岛素。纳米颗粒是带有葡萄糖敏感的苯基硼酸基团和胺部分的“纳米糖”,可与胰岛素有效复合(≈ 95% 的负载能力)形成纳米复合物。在两种不同的糖尿病小鼠模型中,单次皮下注射纳米复合物显示出对葡萄糖挑战的快速有效反应,使血糖水平(低于 200 mg dL –1 )长达 13 小时。发现纳米复合物的形态是控制体内快速和长时间葡萄糖调节胰岛素输送的关键。这些研究表明,注射的纳米复合物能够使小鼠有效释放胰岛素,并具有最佳的生物利用度、药代动力学和安全性。这些结果凸显了一种基于天然和可生物降解纳米糖的葡萄糖响应型胰岛素输送系统的有前途的开发策略。
二芳二酸(L -IDOA)残基硫酸乙酰乙酰胺(HS)和硫酸真皮(DS)中的残基。在MPS I中,低水平的溶酶体IDUA活性会导致HS和DS积聚在细胞中,从而导致包括大脑在内的多个组织和器官的进行性疾病。更严重的MP形式我通常会在生命的前十年内导致智力低下和过早死亡。有两种可用的MPS I:I)使用重组人IDUA静脉注射的酶替代疗法,[2]和II)造血干细胞移植以从健康移植细胞中产生IDUA,但是,两者都有实质性的限制。例如,替代酶不能越过血脑屏障(BBB),因此对神经系统症状没有影响,而造血干细胞移植具有很大的发病率和死亡风险。此外,两种治疗方法都非常昂贵。因此,需要越过BBB并缓解MPS I的神经系统症状的小分子药物的发展是可取的。小分子抑制剂目前正在探索作为溶酶体储存疾病的治疗方法。例如,与累积底物生物合成有关的酶的抑制作用已用于底物还原疗法。最近,研究了有机固核药物Ebselen(2-苯基1,2-苯甲甲硅烷二唑-3(2 h)-One),作为MPS I的潜在底物还原治疗。[3] Ebselen通过抑制L -IDOA生物合成降低了MPS I细胞中的糖胺聚糖积聚。但是,它无法减少MPS I鼠标模型中的糖胺聚糖积累。治疗溶酶体储存疾病的另一种常见小分子方法是药理学伴侣治疗(PCT)。在PCT中,伴侣分子通常是活性位点定向抑制剂,可以结合和稳定突变酶以防止其降解并改善运输到溶酶体。[4]一次在溶酶体的低pH环境中,伴侣分离导致
1个糖作物研究所,糖作物疾病和害虫研究,农业研究中心,吉萨,埃及,埃及2,生物技术系埃及吉萨(Giza)的农业研究中心,5植物保护和生物分子诊断部,ARID土地耕地研究所,科学研究与技术应用,新博格·阿拉伯,阿拉伯,埃及,埃及,埃及,6个植物学系,埃及学系,Zagazig University,Zagazig and Zagazig,Zagazig,Zagazig,Zagazig,Zagazig,Zagazig,Genertic and genticn and egyptic,埃及,埃及,埃及,埃及,埃及。萨达特城大学,萨达特城大学,埃及,农业植物学8号农业学院(萨巴巴沙),亚历山大大学,亚历山大,埃及,
摘要 尽管通过多种催化策略在废弃 CO 2 的回收利用方面取得了稳步进展,但每种方法都有明显的局限性,阻碍了糖等复杂产品的生成。在本文中,我们提供了一份路线图,评估了与最先进的电化学工艺相关的可行性,这些工艺可用于将 CO 2 转化为乙醇醛和甲醛,这两者都是通过福尔马糖反应生成糖的基本成分。我们确定即使在低浓度下,乙醇醛也在糖形成过程中作为自催化引发剂发挥着关键作用,并确定甲醛生产是一个瓶颈。我们的研究证明了在化学复杂的 CO 2 电解产物流中成功进行的福尔马糖反应的化学弹性。这项工作表明,CO 2 引发的糖是快速生长和可转基因大肠杆菌的适当原料。总之,我们介绍了一个由实验证据支持的路线图,该路线图突破了 CO2 电转化可实现的产品复杂性的界限,同时将 CO2 整合到维持生命的糖中。
纳米医学为改善传统化疗的临床结果提供了一个有希望的机会,传统化疗通常存在水溶性差、肿瘤靶向能力低和血液/肾脏清除速度快的缺点。1 – 3 一些纳米制剂,包括脂质体、4 – 7 聚合物、8 – 11 和无机材料 12 – 14,具有增强渗透性和保留 (EPR) 效应,在实验室中比游离分子药物表现出更高的功效。然而,很少有抗癌纳米药物获得美国食品药品监督管理局 (FDA) 批准。15 – 17 最明显的局限性之一是这些纳米制剂通常需要多种成分,这导致结构异质性、重现性差和赋形剂引发的生物毒性,这些都是限制临床转化的重要障碍。 18 – 20 另一个限制是,尽管抗肿瘤药物在纳米载体的帮助下被运送到肿瘤,但它们在肿瘤病灶中的保留率很低。 21 – 23 分子药物由癌细胞中的 e ffl 通量蛋白泵出,导致
高粱是发达国家和世界其他地方的主食的一种饲料/工业作物。这项研究评估了高粱迷你核心收集天数,在7-12个测试环境中,多天开花(DF),生物质,植物高度(pH),可溶性固体含量(SSC)和果汁重量(JW)和DF和pH的高粱参考集。我们还分别在迷你核心收集和参考集中分别进行了6 094 317和265 500单核苷酸多态性标记的全基因组缔合映射。在迷你核心面板中,我们确定了DF的三个定量性状基因座,两个用于JW,一个用于pH,一个用于生物质。在参考集面板中,我们确定了6号染色体上pH的另一个定量性状基因座,该特性也与迷你核心面板中的生物质,DF,JW和SSC有关。从该基因座中选择的三个基因的转基因研究表明,当在高粱和甘蔗中过表达时,Sobic.006G061100(SBSNF4-2)增加了生物质,SSC,JW和pH,并且在跨基因高粱中延迟开花。SBSNF4-2编码进化保守的AMPK/SNF1/SNRK1异三聚体配合物的γ亚基。SBSNF4-2及其直系同源物将在植物中生物量和糖产量的遗传增强中有价值。
摘要孤儿基因(OG S)是特定分类群独有的基因,在原代新陈代谢中起着至关重要的作用。然而,对于我们先前的研究中鉴定出的铜管rapa og s(brog s)的功能意义知之甚少。为了研究其生物学功能,我们在拟南芥中开发了43个基因的Brog过表达(Brog OE)突变库,并评估了植物的表型变异。我们发现43个Brog OE突变体中有19个表现出突变体表型,而42个显示出可变的糖含量。选择了一个突变体Brog1 OE,具有显着升高的果糖,葡萄糖和总糖含量,但蔗糖含量降低,以进行深度分析。Brog1 OE显示出拟南芥合成酶基因(ATSUS)的表达和活性降低;但是,转化酶的活性没有变化。In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 ( BrOG1A ) and BraSca000221 ( BrOG1B ), by the use of an ef fi cient CRISPR/Cas9 system of Chinese cabbage ( B. rapa ssp.campestris)由于brsus1b,brsus3的上调,果糖,葡萄糖和总可溶性糖含量降低,并且特定于编辑的Brog1转基因线中的BRSUS5基因。此外,我们观察到蔗糖含量增加和Brog1突变体中的SUS活性,转化酶的活性保持不变。因此,Brog1可能以SUS依赖性方式影响了可溶性糖代谢。这是研究Brog S在可溶性糖代谢方面的功能的第一份报告,并强化了OG S是营养代谢的宝贵资源的观念。
桃刀片(myzus persicae)和betbladlusen(Aphis fabae)是该疾病的最有效媒介。甜菜中的病毒湾通过吮吸叶子的病毒感染的蚜虫传播。蚜虫种群的大小受其主要寄主植物,天然敌人和天气的影响。温暖而干燥的天气通常会导致更多的移民蚜虫可以在气流中捕获并驱动更长的距离。瑞典甜菜中病毒湾的高度出现主要是由于病毒感染的蚜虫从南方迁移而引起的。温度还会影响树桩或宿主植物中的冬季蚜虫的数量。过去,瑞典的低温抵消了活跃的蚜虫的越冬,但是由于气候变化,冬季越来越普遍存在越来越大的风险。
摘要 糖业是印度第二大农业产业,对该国的水资源、粮食和能源安全有着重大影响。在本文中,我们使用关联方法来评估印度相互关联的水资源-粮食-能源挑战,特别关注印度最大的糖产区之一马哈拉施特拉邦的糖业政治经济。我们的工作强调了三点。首先,政府对糖业的支持可能会持续下去,因为政策制定者与该行业有着千丝万缕的联系。根深蒂固的政治利益继续推行激励糖业生产的政策。随着糖产量过剩,政府出台了额外政策来减少这种过剩,从而保护糖业。其次,尽管糖业经济对印度很重要,但糖业政策对水资源和营养都有不利影响。长期以来,政府对甘蔗定价和销售的支持扩大了马哈拉施特拉邦低降雨地区的耗水甘蔗灌溉,这减少了该邦的淡水资源,并限制了更有营养的作物的灌溉。尽管营养价值低,但空热量糖通过公共分配系统得到了补贴。第三,印度政府目前正在推广以甘蔗为基础的乙醇生产。这项政策的好处是提供更大的能源安全,并在印度市场创造对剩余糖的新需求。我们的分析表明,一项国家生物燃料政策,鼓励用甘蔗汁而不是直接从糖蜜中生产乙醇,可能有助于减少人类消费的补贴糖,而不必扩大水和土地的使用来增加甘蔗的生产。