摘要在这项研究中,通过用苯胺盐氧化聚合方法制备了聚苯胺(PANI)。p-硫烯磺酸(P TSA)充当赋予导电性能的掺杂剂。掺杂过程将PANI的颜色从蓝色Pani Emeraldine碱(EB)转变为绿色Pani Emeraldine Salt(ES)。通过热重分析(TGA)和差异扫描量热法(DSC)分析了掺杂的PANI的热特性。TGA结果说明了PANI-EB体重减轻的两个主要阶段,这是水分含量和聚合物降解的损失。pani-es显示了三个降解阶段,这些阶段是去除掺杂剂,水分含量和聚合物主链的分解。Pani-es开始在170至173°C的较高温度下降解。这个结果表明,与PANI-EB相比,Pani ES具有更高的热稳定性,而PANI-EB的温度范围为160至163°C的较低温度开始恶化。dsc分析表明,pani的PTSA中有0.9 wt。PTSA的热量表中描绘了一系列宽峰,这表明与PANI相比,与PANI相比,pani的峰值较高,而PANI则具有不同浓度的PTSA。此外,pani为0.9 wt。%的P TSA在125°C时表现出最高的热稳定性。准备好的PANI通过应用易于浸入技术来制造导电织物。将棉布浸入三种不同浓度(0.3、0.6和0.9 wt。%)的Pani-PSA溶液中。基于电阻抗光谱(EIS)分析的发现,可以得出结论,与PANI相比,PANI的PANI为0.9 wt。PTSA的PANI表现出更好的电导率(3.30 x 10 -3 s/m),而PANI的电导率(1.06 x 10 -7 s/m)。关键词:聚苯胺,导电聚合物,热重分析,差扫描量热法,电阻抗光谱
该文件是由美国环境保护署(EPA)的水科学和技术办公室的健康与生态标准部门编写的。该机构非常感谢OW,研发办公室(ORD),儿童健康保护办公室(OCHP)(OCHP)和土地和紧急管理办公室(OLEM)的EPA科学家的宝贵贡献。该文档的作者包括布列塔尼·雅各布斯(Brittany Jacobs);凯西·林德伯格;卡莉·奥斯丁;凯利·坎宁安(Kelly Cunningham);芭芭拉·索尔斯(Barbara Soares);和露丝·埃茨(Ruth Etzel)。该文件的作者包括J. Michael Wright;伊丽莎白·拉德克(Elizabeth Radke); Michael Dzierlenga;托德·祖林登(Todd Zurlinden);杰奎琳·温伯格(Jacqueline Weinberger);托马斯·贝特森;汉古鲁;和凯利·加西亚(Kelly Garcia)。该文档的OCHP作者包括Chris Brinkerhoff;和格雷格·米勒(Greg Miller)(以前是OW)。EPA科学家为OW的文档开发提供了宝贵的贡献,其中包括Czarina Cooper;乔伊斯·多纽(Joyce Donohue)(退休); Adrienne Keel;阿曼达·贾维斯(Amanda Jarvis); James R. Justice;来自ORD包括蒂莫西·巴克利(Timothy Buckley);艾伦·戴维斯(Allen Davis);彼得·埃吉(Peter Egeghy); Elaine Cohen Hubal;帕梅拉·诺伊斯(Pamela Noyes);凯瑟琳·纽豪斯(Kathleen Newhouse); Ingrid Druwe;米歇尔愤怒;克里斯托弗·劳;凯瑟琳·吉本斯;和保罗·施洛瑟(Paul Schlosser);从Olem中包括发电的福斯特。 对经理和其他科学专家的文件审查草案的额外贡献,包括ORD毒性途径工作组和预防化学安全和污染办公室(OSCPP)的专家。EPA科学家为OW的文档开发提供了宝贵的贡献,其中包括Czarina Cooper;乔伊斯·多纽(Joyce Donohue)(退休); Adrienne Keel;阿曼达·贾维斯(Amanda Jarvis); James R. Justice;来自ORD包括蒂莫西·巴克利(Timothy Buckley);艾伦·戴维斯(Allen Davis);彼得·埃吉(Peter Egeghy); Elaine Cohen Hubal;帕梅拉·诺伊斯(Pamela Noyes);凯瑟琳·纽豪斯(Kathleen Newhouse); Ingrid Druwe;米歇尔愤怒;克里斯托弗·劳;凯瑟琳·吉本斯;和保罗·施洛瑟(Paul Schlosser);从Olem中包括发电的福斯特。对经理和其他科学专家的文件审查草案的额外贡献,包括ORD毒性途径工作组和预防化学安全和污染办公室(OSCPP)的专家。该机构非常感谢伊丽莎白·贝尔(Elizabeth Behl)(退休)提供的有价值的管理监督和审查; Colleen Flaherty(OW);杰米·斯特朗(Jamie Strong)(以前是OW;目前的ORD); Susan Euling(OW);克里斯蒂娜·泰耶(Kristina Thayer)(ORD);安德鲁·卡夫(Andrew Kraft)(ORD); Viktor Morozov(ORD); Vicki Soto(ORD);和Garland Waleko(ORD)。
PFBS 盐;磺酰卤;磺烷基/烯基/芳基酯,磺酰胺;砜和含有 PFBS 部分的侧链氟化聚合物。全氟丁烷亚磺酸也是 PFBS 的前体,可通过氧化生成所需的磺酸基团
11-氯磷酸-3-氧化烷-1-磺酸11cl-pf3Ouds 763051-92-9 9-氯hexadecafluoro-3- oxanonane-1-磺酸9cl-pfonic酸9cl-pfonic酸9cl-pf3ons 756426-58-1 4,8-1 4,8-dioxa-3h-perfluonon, 919005-14-4六氟丙烷氧化物二聚体HFPO-DA 13252-13-6 NONAFLUORO-3,6-DIOXAHEPTANOIC NFDHA NFDHA 151772-58-58-58-5 1H,1H, 2H, 2H-Perfluorodecane sulfonic acid 8:2FTS 39108-34-4 Perfluorodecanoic acid PFDA 335-76-2 Perfluorododecanoic acid PFDoA 307-55-1 Perfluoro(2-ethoxyethane) sulfonic acid PFEESA 113507-82-7全氟乙烷硫酸PPFHP 375-92-8全氟heptanoic酸PFHPA 375-85-9 1H,1H,1H,2H,2H,2H-氟Hexane磺酸4:2H-甲己烷磺酸4:2H- Perfluorohexanoic acid PFHxA 307-24-4 Perfluoro-3-methoxypropanoic acid PFMPA 377-73-1 Perfluoro-4-methoxybutanoic acid PFMBA 863090-89-5 Perfluorononanoic acid PFNA 375-95-1 1H,1H, 2H, 2H-Perfluorooctane sulfonic acid 6:2FTS 27619-97-2 Perfluorooctanesulfonic acid PFOS 1763-23-1 Perfluorooctanoic acid PFOA 335-67-1 Perfluoropentanoic acid PFPeA 2706-90-3 Perfluoropentanesulfonic PFPeS 2706-91-4 Perfluoroundecanoic acid PFUnA 2058-94-8 *N-ethyl perfluorooctanesulfonamidoacetic acid NEtFOSAA 2991-50-6 * N-methyl perfluorooctanesulfonamidoacetic acid NMeFOSAA 2355-31-9 * Perfluorotetradecanoic acid PFTA 376-06-7 *全氟二烷酸PFTRDA 72629-94-8分析物总数 - 29 A CASRN或CAS注册表,是一种唯一的数字标识符,与一种化学物质和相关信息相对应。
每氯烷基酸(PFAAS),例如三氟乙酸(TFA),氟丙烷酸(PFPRA),丙烷磺酸(PFMS),丙酸(PFMS),丙烷基硫酸硫酸硫酸硫酸(PFROROUR)(PFROROUR)(PFROROUD), PFA的一个子集,其特征是每氟化碳(C F)的链长度为1-3。 1与它们的长链对应物相比,这些化学物质在历史上被忽略了,原因是它们的毒性较低和生物蓄积潜力。 然而,这些超短链PFAA的高极性,水溶性和持久性会导致在水生和植物环境中积累,从而增加水生生物和人类的暴露。 尤其是在全球范围内报道了TFA在水性,固体和生物矩阵中的报道,通常比长链PFAA的浓度高。 2除了直接来源(例如工业生产)外,TFA还据报道是流通制冷剂,农药和药物的降解产物。 3,4这些正在进行的排放,加上TFA的极端持久性和流动性,导致了迅速增加和潜在不可逆转的行星暴露。 2每氯烷基酸(PFAAS),例如三氟乙酸(TFA),氟丙烷酸(PFPRA),丙烷磺酸(PFMS),丙酸(PFMS),丙烷基硫酸硫酸硫酸硫酸(PFROROUR)(PFROROUR)(PFROROUD), PFA的一个子集,其特征是每氟化碳(C F)的链长度为1-3。1与它们的长链对应物相比,这些化学物质在历史上被忽略了,原因是它们的毒性较低和生物蓄积潜力。然而,这些超短链PFAA的高极性,水溶性和持久性会导致在水生和植物环境中积累,从而增加水生生物和人类的暴露。尤其是在全球范围内报道了TFA在水性,固体和生物矩阵中的报道,通常比长链PFAA的浓度高。2除了直接来源(例如工业生产)外,TFA还据报道是流通制冷剂,农药和药物的降解产物。3,4这些正在进行的排放,加上TFA的极端持久性和流动性,导致了迅速增加和潜在不可逆转的行星暴露。2
1。POPS农药的清单2。五氯苯酚,其盐和酯(PCP)的清单3。多氯联苯(PCB)的库存4。多溴二苯基醚的清单(POP-PBDES) - HBB,C-OCTABDE和C-PENTABDE 5。六焦叶氯二烷(HBCD)的清单6。decabromodiphenyl醚(C-DECA-BDE)的清单7。Hexachlorobutadiene(HCBD)的清单8。多氯联苯(PCNS)的库存9.短链氯化石蜡(SCCPS)10。双胃植物11.浓度含量(PFOA),其盐和PFOA相关的化合物12. pluluorohehexane sulfonicac和Pfhxs和Pfhxs和Pfhx-reftory的盐和PFOA相关化合物12. 14.全氟辛烷磺酸,其盐和全氟辛烷磺酰氟化物
空军完成了位于南达科他州苏福尔斯地区机场的乔福斯空军国民警卫队基地 (ANGB) 的相对风险场地评估 (RRSE),以支持环境修复工作的排序。当本公告中使用“空军”一词时,它包括空军国民警卫队。RRSE 流程用于评估环境修复场地相对于其他场地造成的相对风险。在 RRSE 过程中,将评估《综合环境反应、补偿和责任法案》(CERCLA) 中的修复场地,以便对场地进行排序,以便将来进行补救调查。由于发现了全氟和多氟烷基物质 (PFAS),包括全氟辛烷磺酸 (PFOS)、全氟辛酸 (PFOA) 和全氟丁烷磺酸 (PFBS),因此已针对该设施的场地完成了 RRSE。相对风险不是确定环境恢复工作顺序的唯一因素,但它是优先级设定过程中的一个重要考虑因素。
0 ppm 24 Perchlorates Several FI 0 ppm 25 Perfluorohexane sulfonic acid (PFHxS) and its salts and related substances Several FI 0 ppm 26 Perfluorohexanoic acid (PFHxA) and its salts and related substances Several FI 0 ppm 27 Perfluorooctane sulfonates (PFOS) Several FI 0 ppm 28 Phenol and Phenol化合物几个0 ppm 29磷和磷化合物化合物几个fi 0 ppm 30邻苯二甲酸酯几个fi 0 ppm 31 ppm 31多溴的双苯基(PBBS)几个FI 0 ppm
截至 2022 年 10 月,美国环境保护署 (EPA) 仅发布了四种 PFAS 化合物的最终终生健康咨询水平——全氟辛烷磺酸 (PFOS)、全氟辛酸 (PFOA)、全氟丁烷磺酸及其钾盐 (PFBS) 以及六氟环氧丙烷 (HFPO) 二聚酸及其铵盐(“GenX 化学品”)。由于使用水成膜泡沫进行灭火,PFOS 和 PFOA 在陆军设施中最为常见。
截至 2022 年 10 月,美国环境保护署 (EPA) 仅发布了四种 PFAS 化合物的最终终生健康咨询水平——全氟辛烷磺酸 (PFOS)、全氟辛酸 (PFOA)、全氟丁烷磺酸及其钾盐 (PFBS) 以及六氟环氧丙烷 (HFPO) 二聚酸及其铵盐(“GenX 化学品”)。由于使用水成膜泡沫进行灭火,PFOS 和 PFOA 在陆军设施中最为常见。