摘要:锂镍锰钴(LiNi x Co y Mn z ,NCM)复合材料在先进电子器件和材料/合金中的应用十分广泛,其杂质成分分析是评价其质量的重要领域。本文提出了采用电感耦合等离子体发射光谱法(ICP-OES)测定NCM复合材料中硫的方法。研究了Si、Fe、Mn、Mg、Ca、Ni、Cr及主基体共存杂质的影响。在优化的条件下,硫在0~10 mg/L(±0.9999)范围内呈现良好的线性关系,加标回收率为98.11~102.07%,RSD为3.69%,共存杂质含量低于5.0%对硫的测定无明显干扰。该方法可以作为NCM复合材料中痕量硫含量的可靠测定。
获得稳定且面容量超过 10 mA h cm − 2 的 S 正极是实现高能量密度配置的关键且不可或缺的步骤。然而,增加 S 正极的面容量往往会降低比容量和稳定性,这是由于厚电极中 S 的溶解加剧和可溶性多硫化物的扩散。本文报道了一种独立复合正极的设计,该正极利用 3D 共价结合位点和化学吸附环境来提供 S 物质的限制溶解和阻止扩散的功能。通过采用这种架构,纽扣电池表现出出色的循环稳定性和 1444.3 mA hg − 1(13 mA h cm − 2)的出色比容量,而软包电池配置表现出超过 11 mA h cm − 2 的显著面容量。这种性能与出色的柔韧性相结合,通过连续弯曲循环测试证明,即使在硫负载量为 9.00 mg cm − 2 的情况下也是如此。这项研究为开发具有更高负载能力和卓越性能的柔性 Li-S 电池奠定了基础。
增加了制造高能量可充电电池的需求。1在各种环保能量转换技术中,锂 - 硫酸锂(Li-S)电池被认为是储存能量的新兴替代方案,并且具有2600 W H kg 1的理论能量密度和低环境影响。2此外,关于商业欲望表,Li – s电池远远超出了当前的锂离子电池。硫磺的非凡品质,例如负担能力和生态友好性,使Li – S Batteres成为许多企业的首选。它们不仅提供了更好的性能,而且还与对可持续能源解决方案的不断增长的需求保持一致。但是,他们的广泛实施仍然存在重大障碍。硫的电导率较差,这在其使用方面构成了挑战。此外,在循环过程中发生了明显的体积膨胀。进一步的挑战与有机电解质中溶解的嘴唇中间体的电化学溶解和运输有关。上述现象被称为穿梭效应,代表了高效
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月5日。 https://doi.org/10.1101/2025.03.03.03.641170 doi:Biorxiv Preprint
摘要:使用带有大孔体积的导电单壁3D石墨烯作为阴极支撑材料的导电单壁3D石墨烯制备了有效的全溶剂李 - S电池的耐用纳米结构阴极材料。在活性材料的高载荷(50-60 wt%)下,在充电/放电过程中使用传统的阴极支撑材料观察了微观相位分离,但这通过将硫硫化到弹性和灵感的Nanoporof depline的中孔中的硫化抑制作用来抑制,并具有5.3 ml g的大孔。因此,在固体电解质,绝缘硫和导电碳中实现了耐用的三相接触。因此,在353 K的严格运行条件下,组装全稳态电池的电化学性能显着改善和可行,并提高了循环稳定性,并且循环稳定性以及最高的特定能力,最高的特定能力为716 mA H每克Cath cathe(4.6 Ma H cm-h cm-h cm-0.2 c can in 50%均达到50%的固定量(0.2 c)。关键字:纳米多孔碳,3D石墨烯,锂 - 硫电池,所有固定状态电池,大孔体积
本章介绍的 C3 船舶区域和国家清单是独立构建的港口和港间排放清单的总和。港口清单是为美国 89 个深水港和 28 个五大湖港制定的。2 虽然美国有 117 多个港口,但这些港口是美国货物吨位最高的港口。港口特定排放量采用“自下而上”的方法计算,使用每个港口的船舶停靠、排放因子和活动数据。港口间排放量和其余港口的排放量是使用水路网络船舶交通、能源和环境模型 (STEEM) 获得的。3,4 STEEM 也采用“自下而上”的方法,使用历史北美航运活动、船舶特征和基于活动的排放因子来估算 C3 船舶的排放量。STEEM 用于量化和地理(即空间)表示一般在美国 200 海里 (nm) 范围内航行的船舶的港间船舶交通和排放量。
二手食用油(UCO)是一个伞术,涵盖了所有二手植物油,动物脂肪和加工油,这些植物油,食品加工行业,酒店,餐馆,家庭烹饪或煎炸以及屠宰场废物已使用。无论其起源如何,所有油的主要成分都是甘油酸酯,饱和或不饱和脂肪酸和甘油的酯,伴随着水,颗粒和加工食品的残基。UCO并未归类为危险物品。但是,如果将其处置不当,例如,通过废水的水槽,由于油或脂肪的凝固,排水系统可能会受到堵塞的负面影响。,如果用过的油与其他“固体废物”一起形成巨大的团块,即所谓的Fatbergs,则可能会发生更糟糕的情况。这通常会导致污水管完全阻塞。我们水域中有机污染的20%以上可以是
超级电容器[18]、锌空气[19,20]和锂空气电池[21]以及锂离子、钠离子和钾离子存储负极。[22–24] 不同钴磷化物(Co x P:CoP+Co 2 P)[25]与氧化钴(Co x P/CoO)[26]的组合使这些材料多功能化并提高了其性能。另一方面,Co x P和Co 3 (PO 4 ) 2的联合作用对锂硫电池电化学性能和多硫化物转化机理的影响尚未研究。尽管钴磷化物具有广泛的潜在应用,但它们通常通过复杂的合成路线合成,包括在过量的磷源和还原剂中对钴或钴氧化物进行磷化。[22,24–26] 最近,Li等人。报道了使用化学计量的脱氧核糖核酸 (DNA) 作为 P 源,通过简便的静电纺丝和热处理成功合成了 Co 2 P/Co 2 N/C。[27] 另一方面,由于聚丙烯腈(碳源)溶液中无机组分的溶解度较差,限制了 Co 2 P 的含量。相反,使用水和乙醇可溶性的聚乙烯吡咯烷酮 (PVP) 作为碳源,可以合成无机组分含量高的碳复合材料。[28] 此外,还证实了 PVP 衍生的碳/SiO 2 复合纳米纤维垫可以作为多功能中间层,有效防止多硫化物的穿梭,并提高 S 基锂电池的电化学性能。[29,30]
solid-state Li-S batteries. By hybridizing two-dimensional carbon nitride and N-doped graphene to form CNG with a very high N content, argyrodite decomposition is largely suppressed, which computational and experimental studies show occurs through strong Li-N binding at the solid electrolyte-sulfur host interface. We propose this inhibits the initial oxidation of argyrodite in the indirect process, kinetically limiting Li-ion extraction, and shifting the potential for sulfide ion conversion to sulfur in the first step. This improves SSSB cycling performance by diminishing the build-up of insulating decomposition products at the interface, unlike experienced by carbon materials such as VC and NG. The CNG sulfur
摘要:从中央蒙古和俄罗斯(Southereasia)的低少量苏打水湖(Soda)(Siberia)中分离出革兰氏阴性,厌氧的光养分,动型,摩托车,棒状杆菌,被指定为B14B,A-7R和A-7Y。他们将层状堆栈作为光合结构,而细菌氯酚a作为主要的光合色素。发现菌株在25–35°C,pH 7.5–10.2(最佳,pH 9.0)和0–8%(w / v)NaCl(最佳,0%)下生长。在存在硫酸盐和碳酸氢盐,醋酸酯,丁酸酯,酵母提取物,乳酸,苹果酸,丙酮酸,琥珀酸和富马酸酯的情况下,促进了生长。DNA G + C含量为62.9–63.0 mol%。While the 16S rRNA gene sequences confirmed that the new strains belonged to the genus Ectothiorhodospira of the Ectothiorhodospiraceae, comparison of the genome nucleotide sequences of strains B14B, A-7R, and A-7Y revealed that the new isolates were remote from all described Ectothiorhodospira species both in dDDH (19.7–38.8%)和ANI(75.0–89.4%)。新菌株还通过缺乏所有其他外硫代刺皮缺乏的一氧化氮还原途径而在遗传上区分。我们建议将分离株分配给新物种,即牙孔lacustris sp。nov。,带有类型菌株B14b t(= DSM 116064 t = KCTC 25542 T = UQM 41491 T)。