加密协议的理想目标是在协议与其他协议实例组成时进行保障安全性。普遍组合(UC)协议在很强的意义上提供了此保证:即使与不限制的任意协议实例同时组成,协议也可以安全。ever,已知用于执行一般任务的UC协议仅在大多数参与者诚实或在常见参考字符串(CRS)模型中才存在,其中所有分析都可以访问从某些预分发的分布中汲取的常见字符串。此外,即使在理想的身份验证的沟通中也是不可能的,以UC的方式执行许多有趣的任务,而没有诚实的多数或设置假设。因此,一个自然的问题是,是否存在与UC协议仍然低的CRS模型相比,是否存在更多的设置假设。我们在事务所中回答了这个问题:我们提出了替代性和放松的设置,并表明它们可以支持CRS模型中UC协议的一般可行性结果。这些替代假设具有“公共钥匙式结构”的avor:当事方已注册了公共钥匙,不需要完全信任罪名的注册机构,并且无需全球信任和可用。此外,与CRS模型中的已知协议不同,即使违反了设置假设,提出的协议也可以保证一定的安全级别。
自测试是一种仅基于其经典输入输出相关性来表征任意量子系统的方法,在独立于设备的量子信息处理以及量子复杂性理论中发挥着重要作用。先前关于自测试的研究需要假设系统的状态在仅执行本地测量且无法通信的多方之间共享。在这里,我们用单个计算受限方取代了多个非通信方的设置,这在实践中很难执行。具体来说,我们构建了一个协议,允许经典验证者稳健地证明单个计算受限的量子设备必须准备一个贝尔对并对其执行单量子位测量,直到对设备的状态和测量应用基础变化。这意味着在计算假设下,验证者能够证明单个量子设备内存在纠缠,这是一种通常与两个分离的子系统密切相关的属性。为了实现这一点,我们基于 Brakerski 等人首次引入的技术。 (2018)和 Mahadev (2018) 允许经典验证者约束量子设备的行为,假设该设备不会破坏后量子密码学。
III. 投资组合评估标准 可靠性应被视为建模输入约束,而不是单独的评估指标。规划储备金 (PRM) 与资源充足性 (RA) 计划相结合,是委员会确保维持系统可靠性水平的机制。在系统分析中,每个资源投资组合应包含足够的资源水平以满足 PRM 要求,目前为峰值需求的 15-17%。4 虽然 IOU 也可以选择计算和报告可靠性指标(例如负载损失概率),或定性评估给定投资组合在 PRM 之上的可靠性效益,但委员会不鼓励在 PRM 程序(R.08-04-012 或其后续版本)之外评估可靠性效益。IOU 或任何其他受访者提交的所有资源计划应评估并记录每个投资组合在成本、风险和温室气体排放指标方面的绩效。这些 2 可能的例外是机密的市场价格数据,可以合理地用公共工程或市场价格数据替代。 3 我们认为,能源司制定的可再生能源发电方案是根据透明且经过审查的方法制定的。但是,如指导原则 B 所述,将商业活动反映在可再生能源发电组合中是有好处的。因此,这些方案包括一些汇总的机密信息
随机Oracle(RO)模型;然后,随机甲骨文是通过良好的“加密哈希函数”(例如SHA-3)实例化的,希望所得的方案仍然安全。RO方法的众所周知的应用包括Fiat-Shamir Transform [FS87]和Fujisaki-Oakamoto Trans- trans- [FO99]。但是,RO方法只是一项经验法则,在理论上被证明是不合理的:在开创性的工作中,Canetti等人。[CGH04]设计了一种在随机Oracle模型中安全的方案,但是当随机Oracle被任何函数替换时,它是不安全的。即使以这些负面的结果,随机的甲骨文方法仍然流行,因为人们认为已知的反例人为地人为地人为。希望在自然和实际情况下,可以安全实例化随机甲骨文。一种自然的补救措施是识别“类似RO的”概述,这些概述足以用于重要的应用,然后在良好的假设下具有此类属性的哈希功能。沿着这条线,现有文献中已经提出了许多安全概念,例如点混淆[CAN97],相关性Intractabil- ity [CGH04],相关输入安全性[GOR11]和通用计算提取器(UCES)[UCES)[uces)[BHK13]。在本文中,我们专注于点混淆和uces的构建。
多权利功能加密(MA -FE)[Chase,TCC'07; Lewko-Waters,Eurocrypt'11; Brakererski等人,ITCS'17]是对功能加密(FE)的普遍概括,其中心目标是将信任假设从单个中心信任的关键权威转移到一组多个独立和非相互作用的关键机构。在过去的几十年中,我们看到了从各种假设和各种安全性水平的FE支持不同功能类别的新设计和构造方面的巨大进步。不幸的是,在多权设置中尚未复制同样的情况。当前的MA-Fe设计范围是相当有限的,其正面结果仅因(全部或全部)属性功能而闻名,或者需要通用代码混淆的全部功能。Brakerski等人提供的含义可以部分解释MA-FE中的最新技术。(ITCS'17)。表明,即使只有在有限的收集模型中安全的磁盘方案才能安全,即使MA -FE方案才能安全,即使在界限模型中,每个机构最多都会损坏了通用的混淆方案。在这项工作中,我们重新审视了Ma -fe的问题,并表明从Ma -Fe到混淆的现有含义并不紧张。我们提供了新的方法来设计MA -FE,用于简单和最小的加密假设的电路。我们的主要贡献总结为
基础和资源扩展模型的组合结果用于进行两种类型的分析。鉴于天气依赖性可再生能源(例如风能和太阳能)的能力增加,进行了灵活性评估以检查该地区的柔韧性需求。该分析研究了风险,鉴于未来一代投资组合的变异性和不确定性增加,以及变化的昼夜和季节性净载荷模式。此外,还进行了资源充足性评估,以检查未来一代投资组合的适当性及其在10年损失期望(LOLE)要求(LOLE)要求和相关的季节性充足目标中满足已建立的1天的能力。此外,该评估研究损失负载风险的驱动因素并计算味o资源类别的季节性贡献(除了修改资源外,负载)。今年的RRA使用具有Lole校准循环的迭代过程,将资源充足性评估的关键结果纳入第二次迭代资源扩展中(见图1)并测试最终资源组合的鲁棒性。
年份 石油(美元/桶) 天然气(美元/千立方英尺) 2050 $86.86 $4.27 2051 $87.59 $4.30 2052 $88.33 $4.34 2053 $89.07 $4.37 2054 $89.81 $4.41 2055 $90.57 $4.44 2056 $91.33 $4.48 2057 $92.09 $4.51 2058 $92.86 $4.55 2059 $93.64 $4.59 2060 $94.43 $4.63 2061 $95.22 $4.66 2062 $96.02 $4.70 2063 $96.82 $4.74 2064 $97.63 $4.78 2065 $98.45 $4.82 2066 $99.28 $4.85 2067 $100.11 $4.89 2068 $100.95 $4.93 2069 $101.80 $4.97 2070 $102.65 $5.01 2071 $103.51 $5.05 2072 $104.38 $5.10 2073 $105.25 $5.14 2074 $106.14 $5.18
2022年1月12日,Oro-Medonte委员会乡镇采用了多年预算政策,该政策定义了用于准备多年预算,理事会批准,重新校准,中期调整和报告程序的方法。
