纳米技术的进展激发了对小型样品的超导性的研究,以及对它们超导状态的样品几何形状影响的研究。与散装超导体相比,包含大小的固定性会导致性质变化。众所周知,在I型体积超导体中,磁场会抑制超导性。然而,在小样品中,磁场的影响降低,阈值字段大大高于批量临界场。开发了I型超导球形包含的临界磁场计算方法。计算了针对边界条件的不同类型的临界场对纳入半径的依赖性。所提出的方法具有以任何理想的精度来确定关键场的价值的可能性。
近年来在未加强的持续学习方法中取得了重大进展。尽管它们在受控设置中取得了成功,但它们在现实世界中的实用性仍然不确定。在本文中,我们首先从经验上介绍了现有的自我保护的持续学习方法。我们表明,即使有了重播缓冲液,现有的methods也无法保留与时间相关输入的视频的关键知识。我们的见解是,无监督的持续学习的主要挑战源于无法预测的意见,缺乏监督和先验知识。从Hybrid AI中汲取灵感,我们介绍了E Volve,这是一个创新的框架,它是云中的多个预审预周化模型,作为专家,以加强对Lo-cal Clister的现有自我监督的学习方法。e Volve通过新颖的专家聚合损失来利用专家指导,并从云中返回并返回。它还根据专家的信心和量身定制的先验知识将权重动态分配给专家,从而为新流数据提供自适应监督。我们在几个具有时间相关的实地世界数据流中广泛验证了E volve。结果令人信服地表明,E Volve超过了最佳的无监督持续学习方法,在跨Var-IOS数据流的Top-1线性评估准确性中,volve持续了6.1-53.7%,从而确认了多样化的专家指南的功效。代码库位于https://github.com/ orienfish/evolve。
Supporting evidence: - Description of product or process with specified performance characteristics/ physical parameters/ functionalities demonstrating novelty (new or significant improvement) of the product/process - Declaration demonstrating link with a specific KIC KAVA (indication of the specific output of KIC KAVA(s)) and financial proof of the KAVA investment in the innovation development - Documented proof such as an invoice or an online sales record demonstrating that the purchases totaling to at least客户已经制造了10k€。
• 虽然新的损害函数是一项重大改进,但 NGFS 情景在物理风险建模方面仍然存在一些局限性。这些情景并未声称能够捕捉气候变化的详尽影响(例如临界点的影响)。在使用 NGFS 情景和损害函数结果时应始终保持谨慎,尤其是考虑到这些预测存在很高的不确定性。因此,这些情景不应被视为对气候行动机会进行成本效益分析的合适独立工具。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
数字双胞胎是一项关键的促进技术,它允许民用和军事利益相关者精确模拟灾难,并制定更好和情报驱动的决策,以减轻此类危机事件。在提供关键材料和资产的依赖性,瓶颈和弱点(无论是初级还是子公司)也可以以较低的成本帮助更好地制定弹性计划和策略。此外,通过使用数字双胞胎,民用和军事利益相关者可以及时,正确的方式监测生产过程,确定短缺或缺乏供应链多样性。尤其是在诸如高保真和低容忍度的军事后勤领域至关重要的领域,数字双胞胎具有改善和促进军事供应链的真正潜力。
文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
不均匀性对量子材料的特性至关重要,但是可以测量它们的方法仍然有限,并且只能访问相关可观察的一小部分。例如,诸如扫描隧道显微镜之类的局部探针已经证明,在纳米长度尺度上,丘比特超导体的电子特性是不均匀的。但是,需要解决高阶相关性的互补技术以阐明这些不均匀性的性质。此外,局部隧道探针通常仅远低于临界温度。在这里,我们开发了一种二维的Terahertz光谱法,以测量来自近乎掺杂的丘陵中层间间的隧道共振的Josephson等离子体回声。这项技术使我们能够研究材料中层偶联的多维光学响应,并从外部无均匀的无均匀宽扩展中拓宽了材料中的固有寿命扩大,以实现中间层间隧道隧道。我们发现,不均匀的扩展持续到临界温度的很大一部分,而这在高于热量增加的寿命拓宽之上可以克服。
摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
