过去 20 年,电路量子电动力学发展迅速,超导量子比特和谐振器用于从根本上控制和研究量子光与物质的相互作用。该领域的发展受到量子信息科学和实现量子计算的前景的强烈影响,但也为不同物理系统和研究领域的结合提供了机会。微波领域的超导电路由于具有强大的非线性和零点涨落,以及设计和制造的灵活性,为与其他量子系统接口提供了一个多功能平台。基于电路量子电动力学的混合量子系统可以通过利用各个组件的优势来实现新功能。本论文涵盖了将超导电路与表面声波 (SAW)(沿固体表面传播的机械波)耦合的实验。可以利用 GaAs 基板的压电特性来实现强耦合,我们的实验利用这一点来研究量子场与物质相互作用的现象。表面声波的一个关键特性是传播速度慢,通常比真空中的光慢五个数量级,并且波长短。这使得在巨型原子领域中,超导电路形式的人造原子比相互作用的 SAW 辐射的波长大,这种情况在其他系统中很难实现。本论文中描述的实验利用这些特性来展示机械模式的电磁感应透明性,以及人造巨原子与 SAW 场之间的非马尔可夫相互作用。当 SAW 场被限制在谐振腔中时,短波长允许多模光谱适合与频率梳相互作用。我们使用多模 SAW 谐振器通过双音光谱方法表征微观两级系统缺陷的集合。最后,我们介绍了一种混合超导-SAW 谐振器,并考虑了其在量子信息处理中的应用。使用该设备进行的实验证明了 SAW 模式的纠缠,并在设计用于连续变量量子计算的簇状态的道路上显示出有希望的结果。
量子计算机利用量子力学的内在特性,有望有效解决某些传统计算机无法解决的问题 [1,2]。最令人印象深刻的例子是,1994 年 Peter Shor 证明量子计算机可以有效地分解数字 [1],这对 RSA 加密构成了严重威胁。量子计算机还将对量子模拟产生巨大影响 [3],并可能彻底改变机器学习领域 [4]。因此,实用的量子计算机的诞生将是一项革命性的成就。过去几年见证了量子计算技术的快速发展 [5–16]。现在我们已经进入了噪声中型量子(NISQ)时代 [17],人们可以期望控制超过 50 个量子比特的量子系统 [15,16]。量子计算机可以用各种量子系统来实现,例如捕获离子[18,19]、超导量子比特[20,21]、光子[6-10]和硅[22,23]。特别地,超导量子比特已经成为可扩展量子处理器架构的主要候选者之一。1999年,Nakamura等人[24]首次开发了一种用于超导计算的简单量子比特。随后,特别是近年来,超导量子计算发展迅速,量子比特的数量迅速增加,量子比特的质量也在迅速提高。2014年,使用五量子比特超导量子系统实现了高保真度(99.4%)的两量子比特门[25],这为表面编码方案迈出了重要一步[26]。这一重要里程碑被称为量子
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。 3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。 3.,1111 Budapest,匈牙利5物理学系,科学系,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 g 41296 g欧特伯格,Sweden 7 Cnr cnr cnr cnr cnr cn. Paolo II 132,84084 Fisciano,意大利萨勒诺市8物理学系“ E. R. Caianiello”,萨勒诺研究的大学,通过Giovanni Paolo II 132,84084 Fisciano,salerno,意大利,意大利> > >1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。3.,1111 Budapest,匈牙利5物理学系,科学系,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 g 41296 g欧特伯格,Sweden 7 Cnr cnr cnr cnr cnr cn. Paolo II 132,84084 Fisciano,意大利萨勒诺市8物理学系“ E. R. Caianiello”,萨勒诺研究的大学,通过Giovanni Paolo II 132,84084 Fisciano,salerno,意大利,意大利> > >
[23] J.-L. Word-Diaz,J.C。Prada-Prade,E。Diez-Mimenez,I。Valentine-White and Al。,2012年,“无接触式滑块
对于量子诊断库的插件体验,请考虑购买橙色架子或橙色研发系统。这些产品可确保硬件和软件之间的信号质量,连通性和紧密集成的高标准,这是保证自动诊断所必需的。
首先,我们在实验中测量的强光子 - 光子相互作用,如巨型跨kerr效应所示。在这项工作中,在单个光子水平的两个相干领域之间测量了每个光子约20度的条件相移。鉴于这种强烈的相互作用,我们提出并分析了基于跨凯尔效应的级联设置,以检测巡回微波炉光子,这是一个长期的杰出问题,只有最近的实验实现。我们表明,对于很少的级联传输,可以对微波光子进行无损检测。超导量子干扰装置(squid)的片上可调性被利用在下一个呈现的实验工作中创建可调超导谐振器。最后,我们表明,通过将原子放在传输线的末端,可以有效地生成微波光子。我们还提出了一个可以在任意波数据包中生成光子的设置。
过去几年,量子计算已从一门学术学科转变为一个吸引业界和政府极大兴趣和投资的领域。超导量子比特电路的优势在于,它几乎完全采用硅基铝(或蓝宝石)技术制成,现已扩展到 100 个量子比特。该领域的这种凝聚力使技术得到了显著改进,现在可以制造可重复的大规模电路,尽管量子处理器的复杂性很高,但该社区仍能逐渐将量子比特相干时间延长到 100 微秒以上。近年来,一些用于辅助电路的新材料(如钽)已经出现,即使目前质量最好的量子比特约瑟夫森结仍然完全采用铝技术制造,也能产生具有更高相干性的量子比特。目前,缺乏可用于直接关联所用材料和由此产生的量子比特相干性的计量工具和方法,这意味着在理解是什么限制了超导量子比特的相干性方面存在巨大差距。为什么某些材料更好尚不清楚,因此需要新的测量技术来了解量子层面的材料特性,并需要更精确地比较量子比特的性能。