第13条根据CDR第3(2)(b)条,当定量影响的精确估计不可行时,机构必须使用代表性抽样或其他可靠的推理方法来达到该图。如果无法进行确切的估计,请参考文档,其中可以找到所应用的估计方法的详细信息。
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
无监督的域适应性(DA)包括适应在标记的源域上训练的模型,以在未标记的目标域上表现良好,并具有某些数据分布变化。虽然文献中提出了许多方法,但公平和现实的评估仍然是一个悬而未决的问题,尤其是由于方法学困难在无监督环境中选择超参数。在Skada Bench的情况下,我们提出了一个框架,以评估DA方法的不同方式,除了在文献中很大程度上探讨的计算机视觉任务之外。我们对现有浅层算法进行了完整而公平的评估,包括重新加权,映射和子空间对齐。现实的超参数选择是通过嵌套的交叉验证和各种无监督的模型选择得分进行的,这两个模拟数据集都具有受控的偏移和现实世界数据集的不同模式,例如图像,文本,生物医学和表格数据。我们的基准强调了现实验证的重要性,并为现实生活中的应用提供了实用的指导,并对模型选择方法的选择和影响有了重要的见解。Skada-Bench是开源的,可再现的,可以通过新颖的DA方法,数据集和模型选择标准轻松扩展,而无需重新评估竞争对手。Skada-Bench可在https://github.com/scikit-adaptation/skada-bench上在github上获得。
最近,基于条件分数的扩散模型在监督语音增强领域引起了人们的关注,从而产生了最新的性能。但是,这些方法在普遍到看不见的条件时可能会面临挑战。为了解决这个问题,我们引入了一种以无监督方式运行的替代方法,利用了扩散模型的生成力量。具体来说,在训练阶段,使用基于得分的扩散模型在短期傅立叶变换(STFT)域中学习了清晰的语音,从而使其无条件地从高斯噪声中产生干净的语音。然后,我们通过与语音信号推理的噪声模型相结合,开发了一种后验采样方法来增强语音的增强。通过迭代期望最大化(EM)方法同时学习噪声参数以及干净的语音估计。据我们所知,这是探索基于扩散的生成模型的第一部作品,用于无监督语音增强,与最近的变异自动编码器(VAE)基于无监督的方法和一种最先进的基于扩散的基于扩散的超级访问方法相比,这表明了有希望的恢复。因此,它在无监督的语音增强中为未来的研究打开了一个新的方向。
无监督异常检测是一种常用的神经成像数据分析方法,因为它可以从未标记的数据中识别出各种异常。它依赖于重建特定于受试者的健康外观模型,受试者的图像可以与该模型进行比较以检测异常。在文献中,异常检测通常依赖于分析受试者的真实图像与其伪健康重建之间的残差图像。然而,这种方法有局限性,部分原因是伪健康重建不完善,并且缺乏自然阈值机制。我们提出的方法受到 Z 分数的启发,利用健康人群的变异性来克服这些限制。我们对 ADNI 数据库中的 3D FDG PET 扫描进行的实验证明了我们的方法在准确识别模拟阿尔茨海默病相关异常方面的有效性。
机器学习中的抽象未知未知数表示已知数据分布之外的数据点,并构成了传统机器学习模型的盲点。由于这些数据点通常涉及罕见和意外情况,因此模型可能会做出错误的预测,并可能导致灾难性情况。检测“未知未知数”对于确保机器学习系统的可靠性和鲁棒性并避免在现实安全至关重要的关键应用中出现意外失败至关重要。本文提出了使用主动学习数据选择机制依靠不确定性和多样性的主动学习数据选择机制来检测主动学习(U3DAL)中的无监督未知检测(U3DAL)。在Imagenet-A数据集和不同指标上验证了所提出的方法的有效性,这表明它表现出胜过检测“未知未知数”的现有方法。
p(a | b;α)给定b的概率,由α参数化。注意:α是模型的参数,而不是随机变量x〜Bernoulli(p)x是带有参数p的Bernoulli随机变量。思考:x表示硬币折腾的结果,p(h)= p x〜多项式(φ)x是一个多项式随机变量,具有参数φ和n = 1-这是Bernoulli随机变量的概括。思考:x表示滚动骰子的结果,p(side-i)= p(i); φ= {p(1),。。。,p(6)} z一个随机变量,以指示滚动k flace die的结果(k = 2:bernoulli;多项式;否则)p(z(j)= i)从高斯i绘制数据点的概率。这更多是一种信念或先验,并且独立于数据。思考:上帝将其设置为先验p(z(j)= i | x(j))X(j)点是从高斯 - i生成的概率,因为我们观察到x(j)。将其视为:我们观察到x(j),现在是从高斯i绘制的吗?p(x(j)| z(j)= i)观察x(j)的概率,因为我们正在从z(j)= i生成数据;在本讲座中,我们假设x(j)| z(j)= i〜n(µ(i),σ(i))θθ一组模型参数;如果k = 2,θ= {µ(1),µ(2),σ(1),σ(2),p}
我们提出了一个半监督域自适应框架,用于从不同的图像模态中分割脑血管。尽管可用的脑血管成像技术范围很广,但现有的最先进的方法只关注单一模态。这可能导致显著的分布变化,从而对跨模态的泛化产生负面影响。通过依赖带注释的血管造影和有限数量带注释的静脉造影,我们的框架完成了图像到图像的转换和语义分割,利用解开的、语义丰富的潜在空间来表示异构数据并执行从源域到目标域的图像级自适应。此外,我们降低了基于循环的架构的典型复杂性并最大限度地减少了对抗训练的使用,这使我们能够构建一个具有稳定训练的高效、直观的模型。我们在磁共振血管造影和静脉造影上评估了我们的方法。在源域中实现最佳性能的同时,我们的方法在目标域中的 Dice 得分系数仅低 8.9%,凸显了其在不同模态下进行稳健脑血管图像分割的巨大潜力。
抽象的对比表示学习已被证明是图像和视频的有效自我监督的学习方法。最成功的方法是基于噪声对比估计(NCE),并将实例的不同视图用作阳性,应与其他称为否定的实例形成对比,被称为噪声。但是,数据集中的几个实例是从相同的分布中汲取的,并共享基本的语义信息。良好的数据表示应包含实例之间的关系,语义相似性和差异性,即通过将所有负面因素视为噪声来损害对比学习。为了避免此问题,我们提出了一种新的对比度学习的表述,使用称为“相似性对比估计(SCE)”的实例之间的语义相似性。我们的训练目标是一个软的对比目标,它使阳性更接近,并估计根据其学到的相似性推动或提取负面实例的连续分布。我们在图像和视频表示学习方面均通过经验验证我们的方法。我们表明,SCE在ImageNet线性评估方案上的最低时期时代的较少时代的时期与最低的时期进行了竞争性,并且它概括为几个下游图像任务。我们还表明,SCE达到了预处理视频表示的最新结果,并且学习的表示形式可以推广到下游任务。源代码可用:https://github.com/juliendenize/eztorch。
T细胞受体(TCR)及其同源表位之间结合的准确预测是理解适应性免疫反应和发展免疫疗法的关键。当前方法面临两个显着的局限性:全面的高质量数据的短缺以及通过选择监督学习方法中常用的负面培训数据引起的偏见。我们提出了一种基于变压器的方法,用于相互作用的肽和T细胞受体(Tulip)的方法,该模型通过利用不完整的数据和无监督的学习以及使用语言模型的变压器体系结构来解决这两个限制。我们的模型具有灵活性,并整合了所有可能的数据源,无论其质量或完整性如何。我们证明了先前有监督方法中使用的抽样程序引入的偏差的存在,强调了不受监督的方法的需求。郁金香识别表位的特定TCR结合,在看不见的表位上表现良好。我们的模型优于最先进的模型,并为开发更准确的TCR表位识别模型提供了有希望的方向。