摘要:结果表明,由于其SL 2(c)字符品种与代数表面有关的某些有限呈现的组的表示理论。我们利用代数表面和相关拓扑工具的Enriques -Kodaira分类,以使此类表面明确。我们研究了SL 2(c)角色品种与拓扑量子计算(TQC)的连接,以替代Anyons的概念。Hopf链接H的角色是Del Pezzo表面F H(换向器的轨迹),是我们对TQC的看法的内核。QUTRIT和两Q Q Qubit的魔术状态计算,在我们以前的工作中衍生自从Trefoil结中,可以从HOPF链接看作是TQC。一些两者的bianchi组的特征品种以及奇异纤维的基本组〜e 6和〜d 4包含f h。表面biration等同于k 3表面是其特征品种的另一种化合物。
- 氢氧化铝:有关大鼠产后长期接触高剂量铝(30 毫克铝/千克体重/天、100 毫克铝/千克体重/天、300 毫克铝/千克体重/天)对产前、发育和神经毒性影响的有用信息,很难区分断奶后的发育毒性和直接毒性,因为 F1 代在断奶后的整个时期内都在给药。,在雌性幼崽中观察到柠檬酸钠的影响,在较高剂量下观察到泌尿道病变,在雄性中更常见结果没有观察到对记忆、学习、临界影响、前肢和后肢握力一致结果的影响,在 100 毫克铝/千克体重/天组中观察到的排便、排尿和尸检泌尿道病变、体重和白蛋白/球蛋白比的观察结果不太一致。新生儿和青春期后代的 FOB 特征管理未观察到相关差异,重复剂量铝毒性 LOAEL = 1000 mg Al/kg bw/day,因为根据本研究中性成熟的结果,在 Al-citrate 高剂量组和 NA-citrate 组中均观察到了影响因此,无法提出基于 Al 的 LOAEL/NOAEL。与对照组相比,断奶马的体重差异发生在高剂量 Al-citrate 组和柠檬酸钠组中,并且被认为与剂量有关,但 Al 的作用尚不清楚;Al-citrate 和 Na-citrate 组之间的相对差异可能与液体消耗的差异有关,大鼠,相当于或类似于指南:OECD TG 426 和 OECD TG 452,GLP
材料的触觉感知将材料的性质和结构与我们通过触摸识别和评估这些材料的过程联系起来。触觉感知的研究结果使我们能够设计和制造具有预定触觉吸引力的材料。天然和日常材料的触觉感知通常用所谓的触觉维度来描述,这些维度由粗糙/光滑、硬/软、冷/暖和粘/滑等词对定义。[1] 这些触觉维度是在心理物理研究中确定的,这些研究分析了研究参与者的主观判断与粗糙度、弹性柔顺性、热扩散率和摩擦力等物理材料性质之间的相关性。触觉维度感知的潜在机制和相应的敏锐度是正在进行的研究的主题。一种重要的研究策略是创建定义明确的模型材料,该模型材料只有一个参数(如表面粗糙度或样品柔顺性)有系统的变化,目的是刺激特定的触觉维度。通过对光滑度感知或这些样本之间相似性感知等量的幅度估计,研究参与者可以洞悉相关材料参数和触觉感知的细微差异。大量研究工作在系统地改变表面结构的实验中探讨了粗糙/光滑维度。仅举几个例子,Lederman 和 Taylor 量化了感知粗糙度的幅度估计如何取决于金属表面凹槽的几何形状和宽度。[2] Hollins 研究了不同粒径砂纸的触觉,为纹理感知的双重理论提供证据,该理论预测,对于 100-200 μ m 以下的细微结构,触觉主要受振动提示的影响,而对于粗糙结构,则受空间静态提示的影响。[3] Skedung 制备了应变引起的表面皱纹的复制品,并证明人类的触觉可以辨别纳米级的振幅。 [4] 除了心理物理学研究之外,对纹理表面触觉的神经生理学研究还提供了对不同尺度粗糙度感知的神经机制的洞察。[5] 人类通过触觉辨别表面化学性质的能力已在平面上得到证实,包括不同的材料 [6] 和不同的化学表面改性。[7]
宽带隙半导体有可能表现出负电子亲和势 (NEA)。这些材料可能是冷阴极电子发射器的关键元素,可用于平板显示器、高频放大器和真空微电子等应用。结果表明,表面条件对于获得负电子亲和势至关重要。在本文中,角度分辨紫外光发射光谱 (ARUPS) 用于探索金刚石和 AlGaN 表面的影响。紫外光发射在表征电子发射方面的价值在于该技术强调了发射过程的影响。为了充分表征电子发射特性,还需要采用其他测量方法,例如场发射的距离依赖性和二次电子发射。最近,这些测量方法已用于比较 CVD 金刚石膜的特性。[l] 半导体的电子亲和势定义为将电子从导带最小值移到距离半导体宏观较远的距离(即远离镜像电荷效应)所需的能量。在表面,该能量可以示意性地显示为真空能级与导带最小值之间的差异。电子亲和力通常不依赖于半导体的费米能级。因此,虽然掺杂可以改变半导体中的费米能级,并且功函数会相应改变,但电子亲和力不受以下因素的影响
我们通过层纳米颗粒(LBL NP)报告了与阳离子肿瘤 - 渗透肽(TPP)的表面功能化,同时保持颗粒稳定性和电荷特性。这种策略消除了对肽的结构修饰的需求,并使表面化学物质难以修改或通过共价共轭策略无法访问。我们表明,羧化和硫化的LBL NP都能够容纳线性和环状TPP,并使用基于荧光的检测测定法,以量化每NP的肽载荷。我们还证明了在吸附后保持TPP活性,这表明足够数量的肽具有适当的表面取向,从而有效地在体外摄入了功能化的NP,这是通过流式细胞仪和
图林提出了反应 - 扩散系统来描述形态发生现象[1],反应 - 扩散系统引起了显着的兴趣。在生物学领域,反应 - 扩散系统可能会显示特定的模式,包括动物涂层,皮肤器官的形成,扩散模式的固定[2,3]和细胞分裂[4] [4] [4],这取决于初始条件,空间尺度和几何形状。求解有效表现出模式形成的反应 - 扩散系统,已经开发了数值方案,就像[4]中的工作一样。此外,要考虑几何形状,已经使用各种数值方法研究了曲面上的图案形成。使用[5,6]中的有限元法对表面上的反应 - 扩散系统进行数值求解。提出了修改的galerkin方法来解决隐式表面上的反应 - 扩散方程[7]。已使用有限的差异方法来求解弯曲表面上的部分微分方程[8-10],其中使用了窄带域中的最接近点方法,或使用三角形表面上的laplace -Beltrami操作员。在模式发展过程中,域的生长是基本变化的重要因素[11,12]。因此,许多作者[13 - 15]研究了生长领域的模式形成,包括各向同性[3,16]和各向异性生长[17]。可以实施域的生长以建模人脑的皮质折叠模式[12]。
图1。PEC设备的示意图,由具有金属背触点的半导体吸收器(左),金属计数器电极(右)和电解质环境(中心)组成。这个数字是基于国家可再生能源实验室NREL的约翰·特纳(John Turner)的描述,但在PEC文献中发现了各种各样的类似描述。一个特别有见地的例子是参考。20 by nozik&memming。横坐标表示这三个成分的空间分离,而纵坐标表示所涉及的电子能和电化学电位。电解质区域中的水平描绘了水分分裂的氧化还原电位,包括假定的过电势(将所需能量从1.23 eV,黑色增加到1.6-1.7 eV,蓝色箭头和水平)。(a):平移N型半导体,(b):平频p型半导体,(c):宽间隙p型C型沙尔科硫酸盐吸收器,带弯曲和束带隙朝向表面,以及(d):(d):AS(c),但对于狭窄的GAP吸收量。(d)中的红色“ x”表示孔达到水氧化电位的途径。
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。