我们发现,Ikonos 卫星传感器数据非常适合低地高地沼泽栖息地分类任务。尽管该传感器只有四个相对较宽的光谱带,但它们位于能够很好地识别主要高地沼泽土地覆盖类别的光谱部分。我们发现,该任务所需的大部分光谱信息都包含在三个可见波段内。近红外波段在植被测绘和监测中非常有用,但我们发现它用处不大,尽管该波段的数据可用于识别低地高地沼泽的外部边界。我们发现,Ikonos 数据对于该任务最重要的属性是其高空间分辨率(多光谱模式下为 4 米)和出色的几何特性。这些特性使得人们能够像解读小比例彩色航空照片一样解读 Ikonos 图像。事实上,该项目的成果之一是重新认识了视觉图像解释的重要性,尽管它基于经过处理和增强以最大化其信息内容的数字数据。
LIS的设计可以分为三种一般策略:湿滑的液体注入的多孔表面(SLIPS),[2,4,7]有组织物,[3,6,19,20]和聚合物刷。[21,22]滑片依赖于两个主要因素:通过匹配表面化学,并引入表面粗糙度来最大程度地提高润滑剂对表面的亲和力,从而增强了毛细管对毛细管对底物的粘附。[5]在创建此类滑动系统的技术的开发中,已经有了巨大的研究。[5,13,23–27]典型地,该设计需要多个步骤来引入表面粗糙度,表面功能化和润滑剂。到目前为止,只有很少的研究表明了单步方法中的单块制造,例如,通过电喷雾既有透明质硅烷和全氟popotherether。[28]
我们结合使用高速视频成像和电测量来研究水滴落在预带电固体表面时撞击能量如何直接转换为电能。在各种撞击条件(初始高度、相对于电极的撞击位置)和电参数(表面电荷密度、外部电路电阻、流体电导率)下进行系统性实验,使我们能够定量描述电响应,而无需基于水滴-基底界面面积演变的任何拟合参数。我们推导出此类“纳米发电机”所收集能量的缩放定律,并发现通过匹配外部电能收集电路和流体动力学扩散过程的时间尺度,可以实现最佳效率。
Shor 的论文对密码学界造成了威胁,人们意识到了后量子系统的必要性。2016 年,美国政府机构国家标准与技术研究所 (NIST) 呼吁开发新的后量子密码算法,以便在不久的将来系统化后量子候选算法 [11],并于 2019 年根据各种数学问题公布了 17 个公钥加密和密钥建立算法候选算法和 9 个数字签名算法候选算法 [10]。目前,有五个主要的后量子研究领域正在进行,其中四个在 [3] 中进行了讨论,包括基于格问题的基于格的密码学、基于解码一般线性码的基于代码的密码学,这是一个 NP 完全问题 [2]、基于求多元二次映射的逆的难度或等价于求解有限域上的一组二次方程的多元密码学,这是一个 NP 难问题、基于单向哈希函数的基于哈希的密码学和基于同源问题的基于同源的密码学,例如 [5, 4]。在本文中,我们提出了一种密钥交换协议,其安全性依赖于计算代数几何中的各种问题,例如求解大型多变量高次多项式方程组,或者寻找由多个多变量多项式生成的理想的初等分解,我们推测这些问题是量子安全问题。简而言之:Alice 通过 Segre 和 Veronese 映射选择一个嵌入在大型射影空间中的二次曲面。她提供了一些信息,例如嵌入和品种的自同构,以便 Bob 可以生成达成一致公共密钥所需的嵌入。Bob 和 Alice 都有各自的嵌入,通过这些嵌入他们可以隐藏他们的秘密二次曲面,而是发布包含各自嵌入图像的相应超平面。现在,通过使用他们的私有嵌入,他们计算彼此超平面的拉回,恢复(2,2)齐次曲线,并最终计算组件的 j 不变量。在一些启发式假设下,双方都能够以高概率获得此类组件。j 不变量相等,这是 Alice 和 Bob 的共同密钥。尽管公开数据可用,但由于对潜在问题的假设,攻击者无法恢复私有数据的信息。
羊膜膜产品也已用于治疗精选的眼科伤口和重建,在这些眼科伤口和重建中,可以有限地访问自动组织进行移植,或者当同种异体移植不合适的情况下。这些产品(例如Ambio2,Ambio5,Amniodisk,Amniograft,Prokera,Prokera Slim)以各种形式出现,大多数是直接从纸巾库获得的。
•请注意,水是否有透明或有色。如果您的水清除并且表面正在加班,这是一个生物膜问题。如果您的水从固定装置出来不清,例如黑色,棕色或粉红色,那么这是一个需要通过致电Pennichuck解决的问题。•Pennichuck将有助于诊断该问题,该问题具有不同的选择,具体取决于发生的情况。一些常见的补救措施包括要求您冲洗您的内部家庭管道,如果我们最近在您所在地区遇到彩色水,或者这可能是一个问题,要求我们出来并冲洗您附近的主电源。•如果您的固定装置中流出的水不清楚,请致电800- 553-5191致电客户服务。
分子系统的结构和动力学由其势能面 (PES) 支配,PES 表示总能量与核坐标的关系。获得准确的势能面受到希尔伯特空间指数缩放的限制,从而将实验可观测量的定量预测从第一性原理限制在只有几个电子的小分子上。在这里,我们提出了一种明确的物理信息方法,通过基于实验数据的线性坐标变换来修改 PES 家族,从而改进和评估其质量。我们利用最近对三个不同量子化学水平的参考 PES 进行的全面的 Feshbach 共振 (FR) 测量,证明了 He‐H2+ 复合物 PES 的这种“变形”。在所有情况下,能量分布中峰的位置和强度都得到了改善。我们发现这些可观测量主要对 PES 的长程部分敏感。
路博润工程聚合物公司开发了一种柔软触感材料,可自然粘附于各种基材上,具有出色的防刮、防磨损和防滑(干燥表面)性能,并为基于不同塑料(极性和非极性)的最终共挤部件提供最清洁的防静电解决方案。TPU 层具有更长的使用寿命、顶级的机械性能和可回收性*。除了柔软触感之外,其突出的特点是其低光泽哑光外观,比标准 TPU 更好。
摘要:金属 - 有机网络研究中最具吸引力的主题之一是增长机制。但是,其研究仍然被认为是一个重要的挑战。在此处使用扫描隧道显微镜,在原子量表上研究了Ag(111)和Au(111)表面的金属 - Alkynyl网络的生长机理。在Ag(111)上的1,3,5- Tris(氯乙烯)苯的反应中,在393 K处形成的蜂窝Ag-Alkynyl网络,仅观察到短链中间体。相比之下,相同的前体形成了503 K的Au(111)上的蜂窝Au-Alkynyl网络。进展退火导致逐步进化过程,其中三种Cl-Alkynyl键在二聚体链的形成,Zigzag链,Zigzag链,Zigzag Chains和Novel Nove Chiral网络,如Intermedialses的形成。此外,密度功能理论的计算表明,氯原子对于有助于金属烷基键的破裂以形成Cl-intal-Altalalynyl至关重要,这保证了断裂/形成平衡的可逆性,作为形成常规规则大型大规模有原子网络的关键。■简介金属 - 有机网络(MONS)最近引起了显着的关注,这是二维(2D)材料的新兴领域的一部分。1此外,在MON的设计和制备中,具有出色的结构,化学和功能可调性。2
摘要:随着药物晶体表面积的增加可改善溶解动力学和有效的溶解度,纳米化药物晶体已成为一种成功的口服生物利用度的方法。最近,通过利用聚合物和表面活性剂赋形剂在结晶过程中,开发了自下而上的方法来直接组装纳米晶体,以控制晶体尺寸,形态和结构。然而,尽管重大研究研究了聚合物和其他单一添加剂如何抑制或促进药物系统中的结晶,但很少有工作研究多种赋形剂在药物晶体结构和结晶度的程度上的机械相互作用,从而影响配方性能。这项研究探讨了模型疏水药物晶体的结构和结晶度如何由于竞争性非离子表面活性剂(Polysorbate 80和sorbitan monooleate)和表面活性聚合物(甲基纤维素)之间的竞争性界面化学吸附而变化。经典分子动力学模拟突出了关键分子间相互作用,包括表面活性剂 - 聚合物络合和晶体表面表面活性剂筛选,修改所得的晶体结构。并行,在水凝胶薄膜中产生药物纳米晶体的实验证明了药物结晶度随着表面活性剂的重量分数的增加而增加。仿真结果揭示了整体晶体中的加速动力学与实验测量的结晶度之间的联系。关键字:纳米制剂,分子动力学,界面,聚合物,表面活性剂,结晶度据我们所知,这些是第一个模拟,该模拟直接表征了赋形剂表面组成的结果,并将结晶度的实验范围与分子晶体的结构变化联系起来。我们的方法提供了对纳米结晶中结晶度的机械理解,可以扩大口服可兑换的小分子疗法的范围。
