肺表面活性物质是由磷脂和表面活性蛋白(例如SP-B和SP-C)组成的复合体,它们通过降低表面张力(ST)和防止肺泡塌陷,对维持呼吸系统功能至关重要。我们的研究引入了五种合成的SP-B肽和一种SP-C肽,从而合成了CHAsurf候选物(CHAsurf-1至CHAsurf-5)以供评估。我们采用改进的Wilhelmy平衡测试来评估表面活性剂的表面张力特性,测量铺展速率、表面吸附量和ST面积图,以全面评估其性能。动物实验在新西兰白兔身上进行,以测试CHAsurf-4B的功效。CHAsurf-4B因其经济可行性和良好的ST降低性能而被选中,与Curosurf®相当。研究证实,CHAsurf-4中较高剂量的SP-B与ST降低效果的改善相关。然而,由于成本限制,最终选择CHAsurf-4B进行体内评估。动物模型显示,CHAsurf-4B 可以修复肺泡结构并改善肺弹性,类似于 Curosurf®。我们的研究强调了半胱氨酸残基和二硫键对合成 SP-B 类似物结构完整性和功能的重要性,为未来呼吸系统疾病的表面活性剂治疗奠定了基础。本研究结果支持 CHAsurf-4B 作为治疗药物的潜力,值得进一步研究以巩固其在临床应用中的作用。
先进材料/设备 聚合物、陶瓷、复合材料、半导体、微电子 生物技术 蛋白质治疗、生物燃料、酶、组织、生物医学系统、食品 特种化学品 表面活性剂、化妆品、药物、杀虫剂、除草剂、爆炸物 环境保护/污染控制 绿色工艺设计和控制、废物处理、水生产 能源 化石燃料、生物燃料、电池、太阳能电池、核电 计算和系统技术 数据处理、机器学习建模、计算、工厂优化、过程操作、控制和安全
本目录中显示的 Prochem Europe 清洁产品会不断评估用户安全性和环境影响。产品符合《分类、标签和包装 (GB CLP) 条例》1272/2008(经修订)。原材料符合《化学品注册、评估、授权和限制 (UK REACH) 条例》(经修订)的要求。表面活性剂符合《洗涤剂指令》648/2004(经修订)的生物降解性要求。杀生物剂产品的活性成分符合《杀生物剂产品条例》 (BPR) 528/2012 的要求。
I) 化学工程/化学技术/生物化学工程/生物医学工程/生物技术/生物矿物加工/电化学工程/食品工程与技术/腐蚀科学与工程/染料技术/油,油脂化学品和表面活性剂技术/表面涂层技术/表面工程/土木工程/环境工程/机械工程/材料工程/能源工程/聚合物工程/塑料工程/塑料和聚合物技术/纳米技术/药学(药学学士/生物过程工程/生物信息学/矿物工程/陶瓷技术/石油工程/石油化工技术/能源工程。 /石油化工工程/农业工程/农业生物技术/纳米技术/纳米科学与纳米技术/造纸和纸浆技术/制药科学与技术/制药工程/过程工程/消防与安全工程/工业污染与减排/工业工程/纤维与纺织加工技术/水资源工程/材料科学与工程/过程控制与仪表/过程设计工程/计算机辅助化学工程/能源与环境工程/聚合物科学与工程以及其他化学工程相关学科。 II)化学工程硕士/技术硕士/理学硕士/化学技术/生物化学工程/生物技术/生物过程工程/生物医学工程/生物信息学/生物矿物加工/矿物工程/油,油脂化学品和表面活性剂技术/腐蚀科学与工程/陶瓷技术/染料技术/表面涂层技术/表面工程/冶金工程/石油工程/石油化工技术/石油化工工程/农业工程/生产工程/
摘要通过使用十二烷基苯甲酸钠(SDBS)和十二烷基硫酸钠(SDS)作为碳糊电电子(CPES)的表面修饰剂(CPES),开发了一种选择性和敏感的方法,用于同时使用十二烷基苯甲酸盐(SDBS)和十二烷基硫酸钠(SDS)来确定多巴胺和尿酸的选择性和敏感方法。在较低的SDS和SDB浓度下,由于表面活性剂与CPE的石蜡的疏水链相互作用,它们在CPE表面形成负电荷的单层。在磷酸盐缓冲溶液中,SDS的表面活性剂的优化浓度为2 mm,SDB的SDB为1 mM(分别为0.1 m,pH 7和pH 6)。与普通CPE相比,用SD(CPE-SD)和用SDB(CPE-SDB)修饰的CPE显示出在0.230 V和0.230 V和尿酸(UA)的电化学反应改善,并在0.345 V时在0.345 V时,由于静电相互作用,由于静电相互作用,在静电相互作用且表面呈稳定的分析和表面上的静电量和表面均可分配为SD和SDESS和SDED的均匀分析。在最佳实验条件下,设计的电极对DA的线性响应从0.53μm到31.6μm,UA从5.95μm到118.97μm。在CPE-SD中发现DA和UA的检测极限为0.26和1.10 µm,而CPE-SDBS的检测限为0.22和0.22和0.38 µm。CPE-SDB和CPE-SD显示出良好的可重复性,可重复性,稳定性和高选择性,可确定血清血清样品中DA和UA。关键字:多巴胺,尿酸,碳糊电极,十二烷基硫酸钠,十二烷基苯甲酸钠
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
Peridox 浓缩液为洁净室设施提供了一种经济有效的方法,使整个设施每天都能使用高效杀孢子消毒剂。浓缩液的好处是,它为用户提供了最佳剂量的化学品,使之能够完成工作并将气味降至最低。稀释后,每次都会提供精确的化学品剂量,并且活性成分和表面活性剂的平衡性正确,以确保彻底清洁和杀孢子消毒。此外,在正常的日常使用下,该产品不会损坏敏感设备和常见的洁净室表面。
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
