药物纳米舒张,也称为纳米晶体,主要是由表面活性剂和/或聚合物稳定的不溶性药物颗粒的水分散体。纳米舒张作为液体配方不稳定。纳米悬浮液对固体剂型形式的固化是将纳米晶体优势与固态优势相结合的一种方式。在这篇综述中,有关纳米舒张的稳定和产生的进展被覆盖了。更新用于将纳米司张转换为固体口服剂型的方法(例如,粉末,颗粒,颗粒,片,片剂和电影)。从这些方法中,喷雾干燥和冷冻干燥被广泛使用。肉芽和热融化的挤压可以直接下游处理,同时打印具有剂量个性化的潜力。重点是新型配方(例如纳米晶体,纳米晶体固体分散体),这可以进一步增强可溶性溶解的药物的溶解和生物利用度。
生态酶代表了一种源自有机材料的发酵的生物溶液,并评估其在工业废水处理中的有效性。这项研究研究了生态酶对改善工业废水质量的有效性,通过分析它们对四种特定液体废物的影响:垃圾填充液液,豆腐废水,蜡染废水和洗衣店。样品以特异性浓度用生态酶处理,并孵育5天,然后进行化学分析。生态酶使垃圾填埋渗滤液中的氨水平降低了57%至8.83 mg/L,尽管COD和BOD值分别上升到18,114.6 mg/L和46,709 mg/L,超过了流出量。在豆腐废水中,COD和BOD中的分别降低了72%和75%,至4,189.68 mg/L和2,395.3 mg/l,但仍高于调节限制。 蜡染废水在大多数参数中显示出增加,COD和BOD达到6,838.85 mg/L和3,193.5 mg/l。 对于洗衣废水,表面活性剂降低了55%至12.97 mg/l,但BOD和TSS增加了。 这些发现表明,虽然生态酶可以减少特定的污染物,例如氨和表面活性剂,但在某些情况下,其应用也可以提高鳕鱼和BOD水平。 需要其他治疗过程,例如曝气或凝结,才能达到废水标准。 尽管有局限性,但与互补技术集成在一起时,Eco-enzyme具有一种环境友好的选择。 环境污染问题,尤其是水污染,已成为越来越紧迫的全球关注点。分别降低了72%和75%,至4,189.68 mg/L和2,395.3 mg/l,但仍高于调节限制。蜡染废水在大多数参数中显示出增加,COD和BOD达到6,838.85 mg/L和3,193.5 mg/l。对于洗衣废水,表面活性剂降低了55%至12.97 mg/l,但BOD和TSS增加了。这些发现表明,虽然生态酶可以减少特定的污染物,例如氨和表面活性剂,但在某些情况下,其应用也可以提高鳕鱼和BOD水平。需要其他治疗过程,例如曝气或凝结,才能达到废水标准。尽管有局限性,但与互补技术集成在一起时,Eco-enzyme具有一种环境友好的选择。环境污染问题,尤其是水污染,已成为越来越紧迫的全球关注点。关键字:生态酶,废水质量,蜡染废物,洗衣废物,豆腐废物引言1印度尼西亚的快速工业发展不可避免地会导致浪费量的增加。垃圾填埋场的工业,家庭,农业废物和渗滤液是水污染的主要因素。在工业领域,洗衣,豆腐和蜡染工业都显着产生 *)通讯作者:电子邮件:hariestyav2@gmail.com收到:2024年12月1日修订:2024年12月29日接受:2024年1月14日接受:2025年1月14日,doi:10.23969/jcbeem.v9i1.20142
自首次临床发现 HIV 感染以来,我们已经见证了人类为治愈或根除 HIV 感染而奋斗的四十年。各种已开发的药物,如核苷逆转录酶抑制剂 (NRTIs)、非核苷逆转录酶抑制剂 (NNRTIs)、蛋白酶抑制剂、整合酶抑制剂、杀微生物剂等,都存在已知的局限性,例如单独使用时会产生副作用和产生耐药性,以及隐藏的病毒储存器,这为纳米医学相关系统的参与打开了大门,特别是针对 HIV 感染的潜伏部位。纳米技术载体,如脂质体、树枝状聚合物、金属纳米颗粒、聚合物纳米胶囊/颗粒、表面活性剂和靶向载体,已成为广泛研究的一部分,用于在实际环境中递送 NRTIs、NNRTIs、杀微生物剂和 siRNA。四十年来,针对艾滋病毒感染的潜在治疗方法的研究处于领先地位,需要对纳米技术进行合理的评估,才能找到拯救生命的切实可行的解决方案。
摘要 - 石墨烯的进步在探索其用于不同应用程序的属性方面产生了需求。探索其特性的一种方法是降低其疏水性。为了克服石墨烯的疏水性,表面活性剂已用于功能化,从而改善了石墨烯单层的表面特性。因此,研究CVD石墨烯的表面活性剂处理对于理解石墨烯的表面特性影响很有用。这项研究利用硅底物上的CVD石墨烯。在不同的治疗时间内,用不同浓度的巧克力(SC)进行处理。然后,使用原子力显微镜(AFM)对这些样品进行表征,以研究处理前后样品的表面特性。要优化,石墨烯必须保持在硅底物上。结果表明,基本上是SP 2结构的石墨烯的完整性,因为即使在处理SC溶液的重量/体积浓度为1%的重量/体积浓度下,底物也没有分层。
摘要 水中新兴污染物的增多对科学界和水处理利益相关者提出了挑战,要求他们设计出简单、实用、廉价、有效且环保的修复技术。新兴污染物包括抗生素、激素、非法药物、内分泌干扰物、化妆品、个人护理产品、杀虫剂、表面活性剂、工业产品、微塑料、纳米颗粒和纳米材料。去除这些污染物并不容易,因为传统的废水处理系统并非为处理新兴污染物而设计的,而且污染物通常以痕量形式存在于复杂的有机矿物混合物中。在这里,我们回顾了去除废水中新兴污染物的先进处理方法,重点关注使用非常规吸附剂(如环糊精聚合物、金属有机骨架、分子印迹聚合物、壳聚糖和纳米纤维素)的吸附导向工艺。我们描述了用于降解和去除新兴污染物的生物技术。然后,我们提出高级氧化过程由于其简单性和效率而作为最有前景的策略。
类囊泡,又称非离子表面活性剂囊泡,是一种小型层状结构,由烷基或二烷基聚甘油醚类非离子表面活性剂与胆固醇结合,然后在水基溶液中水合而成。这些囊泡系统类似于脂质体,可用作两亲性和亲脂性药物的载体。类囊泡的生产工艺源自脂质体技术。基本制造方法保持不变,其中脂质相由水相水合。脂质相可以由纯表面活性剂或表面活性剂和胆固醇的组合组成。类囊泡有效地解决了与药物不溶性、不稳定性、生物利用度不足和快速降解相关的挑战。类囊泡的两亲特性结合了亲水性和亲脂性,增强了其包封亲水性或亲脂性药物的能力。胆固醇经常被用作成分之一。保持囊泡结构的硬度。本文讨论了囊泡的基本要素,包括其结构成分、制造方法及其在不同疾病中的用途。
光电特性,以太阳能电池为基础的应用,[1,2]发光设备[3,4]和光电探测器。[5-7]在这些应用中,通过真空沉积的合成是一种工业可伸缩,低成本和环保方法,以制造有效的,稳定和耐用的光电设备。[8–11]此外,已经通过不同的途径[6,12-14]实现了OMHP的各向异性纳米结构,例如纳米棒,纳米线或纳米片,可以将模板和化学物质的生长(例如第一次使用)纳入模板和化学构造的模拟结构(15])或凹槽[17,18]在其内部生长OMHP,而第二种是使用溶液合成方法来控制生长,例如表面活性剂或阴离子 - 交换反应等。[12,19]这些半导体各向异性纳米结构的一个关键特征是它们的极化 - 敏感的光电子响应。[15,20–22]尽管我们当前的许多设备都利用极化器来产生偏光光,但存在几个缺点,例如生成的束的强度降低和/或它们在微观和纳米级设备中的集成,从而限制了OptoelectRonic Systems的整体效率。[15,23]
工业或个人用途会增加环境污染(例如水污染或二氧化碳产生)并且还会导致不利的健康影响(例如刺激、过敏反应或溶血问题)。 [6] 因此,必须找到一种环保且可持续的替代方案。Pickering 乳液以首次报道它们的科学家的名字命名,其特点是存在提供稳定性的界面活性粒子。 [7] 在油包水或水包油乳液的情况下,这些 Pickering 稳定剂会吸附在油/水界面上并发挥作用。 [8] 特别是,与传统的表面活性剂稳定体系不同,高胶体稳定性不是来自表面张力的降低,而是来自界面上物理屏障的形成。 [9] 纳米粒子的不可逆锚定可以通过考虑从两种不混溶液体界面解吸所需的高能量来解释。 [10] 因此,产生了强大的空间屏障,乳液具有很强的抗聚结、抗变形和抗奥斯特瓦尔德熟化能力,可以长时间有效地保护液滴。 [6]
抽象的同时多层涂料技术是广为人知的,但是它们的工业应用仍限于狭窄的市场领域。收养的一个障碍可能是熟悉此类过程但不需要的行业之间的不匹配,以及不熟悉但不熟悉的行业。此外,开发多层涂层过程的应用特定于技术挑战。在本文中,我们描述了我们针对新的和新兴的能源应用的全高含量高负载的浆液的同时多层涂层的解决方案。第一个问题是对模具内部物质中高负载的浆液的粒子堵塞(与剪切厚的粘合剂相结合),我们通过添加少量的粘度修改器而在不减少固体载荷的情况下通过添加少量的粘度修改器来缓解。第二个问题是Marangoni驱动的表面不稳定性,类似于顶层去润滑,我们通过仔细选择表面活性剂来调整每个浆液的动态表面张力来解决。在逐步开发的早期就解决了这两个问题,节省了显着的开发成本,在我们的情况下,这是由昂贵的材料驱动的。
大学,B.G Nagar,卡纳塔克邦571448,印度摘要脂质体,聚合物纳米颗粒和乳液是其他流行的胶体载体的替代品。由于其优势,固体脂质纳米颗粒是在1990年代初开发的,包括受控药物释放,聚焦药物输送和出色的耐用性。在本文中总结了许多用于制造固体脂质纳米颗粒和赋形剂(包括膜承包商技术)的方法,以及它们可能的好处和缺点。固体脂质纳米颗粒(SLN)稳定性依赖于随着时间的推移维持粒径,药物封装和完整性。表面活性剂和脂质等赋形剂会影响稳定性,从而阻止聚集和氧化。干燥技术(例如喷雾干燥和冻干)通过将SLN转换为固体形式,增强稳定性,而脂质组成和药物脂质兼容性是至关重要的因素。因此,对所采用的工具技术以及与SLN制造相关的困难进行了彻底检查。特定的重点放在SLN中的SLN释放模式和药物整合模型上。详细介绍了SLN的主要用途,包括靶向药物输送以及SLN评估中使用的分析方法。这项工作的主要目的是对固体脂质纳米颗粒的详细概述,包括生产方法,表征和给药途径。还包括对SLN输送机制的组成部分和载体的体内命运的讨论。本文的主要关注点是固体脂质纳米颗粒(SLN)。关键字:固体脂质纳米颗粒,固体脂质,表面活性剂,胶体药物载体和药物掺入。引言在生物技术,生物医学工程和纳米技术等领域的进步显着促进了新型药物输送系统的快速增长。纳米技术被广泛用于几种最现代的配方技术中,这需要携带API的纳米结构的发展。纳米技术涉及从1到100纳米的结构进行研究和使用。使用受管制和专注的药物输送机制,纳米技术的主要目标是尽快诊断出实际和迅速的诊断,并像实用性一样有效,安全地对待。纳米颗粒,固体脂质纳米颗粒,纳米悬浮,纳米乳胶,纳米晶体和其他药物输送系统是纳米技术原理创建的一些最受欢迎的药物。固体脂质纳米颗粒(SLNS)于1991年首次开发,比传统胶体载体(如乳液,脂质体和聚合物微粒和纳米颗粒)具有优势。(Khatak等,N.D.2013)
