摘要 - 智能运输系统(ITS)旨在推进与不同运输,交通管理和自动驾驶汽车不同的创新策略。本文研究了连接和自动驾驶汽车(CAV)的排,并提出了一个分布式观察者以跟踪CAV动力学状态。首先,我们通过LTI互连系统对CAV动力学进行建模。然后,提出了一种基于共识的策略,以通过车辆通信网络来推断基于本地信息交换的CAV动态状态。对块 - 二角观察者增益设计采用了线性 - 矩阵 - 质量(LMI)技术,使得该增益以分布式方式并在本地与每辆车相关联。然后显示分布式观察者误差动力学遵循系统动力学的Kronecker矩阵乘积和CAV网络的邻接矩阵的结构。在本文中进一步讨论了可生存的网络设计和冗余观察者方案的概念,以解决链接和节点故障的弹性。最后,我们通过数值模拟来验证我们的理论贡献。索引条款 - 分布的估计,排,观察者设计,连接和自动驾驶汽车
这款两级固体推进剂驱动的中程弹道导弹由印度战略部队司令部负责作战,该司令部隶属于印度核指挥局,由国防研究与发展组织 (DRDO) 研制。烈火-3 首次已知研制试验于 2006 年 7 月进行,但未能达到预期效果。它随后于 2007 年 4 月成功进行了飞行试验。此后,该系统已成功试验多次。烈火-3 试验是在印度战略攻击核潜艇 INS Arihant 成功发射潜射弹道导弹 (SLBM) 一个多月后进行的。潜射弹道导弹发射后,印度国防部表示:“此次发射对于证明艇员能力和验证 SSBN 计划具有重要意义,SSBN 计划是印度核威慑能力的关键要素。强大、可生存且有保证的报复能力符合印度的‘可信的最低限度威慑’政策,而这种政策是其‘不首先使用’承诺的基础。”“可信的最低限度威慑”和“不首先使用”的战略态势对印度的核战略至关重要。
辐射屏蔽是必不可少的,因为在这种环境中,辐射可能是一个严重的问题,这种环境可能是天然的,也可能是人造的。天然辐射源如太阳风,由电子、伽马射线、质子、中子或范艾伦带等组成,而人造辐射源则是核电站或大气层外或大气层内的核爆炸。核爆炸会产生即时和延迟的破坏性影响,这需要选择正确的防护材料,以使集成电路得到屏蔽,并在核武器爆炸驱动的辐射环境中生存下来。爆炸、热辐射、电磁脉冲和瞬时电离辐射等核武器效应是选择合适材料时要考虑的一部分。辐射屏蔽基于衰减原理,即通过阻挡或使粒子穿过屏障材料反弹来减少波或射线的影响的能力。这篇简短的评论讨论了有关所选材料和集成电路在人造或天然辐射环境中的生存力和屏蔽的不同整体问题。
Milstar 系统由地球同步轨道上的多颗卫星组成。Milstar 可在南北极之间提供 24 小时不间断的全球覆盖。Milstar 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。这些部分将使用低数据速率 (LDR) 和中数据速率 (MDR) 波形以指定的数据速率提供通信,速率范围从 75 bps 到大约 1.5 Mbps。空间部分由在轨卫星系统组成,利用交联通信实现卫星间通信。任务控制部分控制在轨卫星,监测飞行器健康状况,并提供通信系统规划和监测。该部分具有很高的生存能力,既有固定控制站,也有移动控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有服务使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。空间系统司令部(SSC)负责采购空间和地面部分以及空间部队终端部分。
1. 设计条件 飞机应用的设计条件与其他 HVAC 应用在几个方面有所不同。商用运输飞机通常在人类无法生存的物理环境中运行。在飞行中,环境空气可能极其寒冷干燥,并且可能含有高浓度的臭氧。在地面上,环境空气可能炎热潮湿,并含有许多污染物,如颗粒物、气溶胶和碳氢化合物。这些条件从地面操作到飞行变化很快。炎热天气、高湿度的地面条件通常决定了空调设备的热容量,而飞行条件决定了供应空气压缩机的容量。最大加热要求可以通过寒冷天气的地面或飞行操作来确定。除了基本的安全要求外,ECS 还应为乘客和机组人员提供舒适的客舱环境。由于乘客座位密度高,这带来了独特的挑战。此外,飞机系统必须重量轻、易于快速检查和维修、高度可靠、能够承受飞机振动和机动载荷,并能够补偿各种可能发生的系统故障。
• 动机和关键问题 – 复合材料能量吸收器通过失效耗散能量,提高了现代商用飞机的耐撞性能。这些目标能量吸收器的承载能力可能会因缺陷而受到损害。在可幸存的碰撞事件中,这些能量吸收器将经历较高的应变率和负载率。因此,有必要研究这些碰撞吸收器在动态负载率下存在缺陷时的性能。 – 对于飞机座椅,制造缺陷和使用中损坏仅在静态试验中得到证实,但不包括在动态试验中。在定义 SAE ARP 6337 [1] 时,有人担心这些缺陷/损坏可能会改善或增强座椅在动态试验中的行为。因此,为了平衡动态试验中缺乏 1 类损坏的问题,静态试验中定义了 1 类和 2 类损坏的一些延伸。其原理是,如果静态试验有足够的余量,座椅系统的稳健性可以在静态和动态试验中得到证明。然而,需要评估缺陷对不同座椅部件性能的影响。目前的调查将有助于制定支持ARP 6337的指导材料。
1.设计条件 飞机应用的设计条件与其他 HVAC 应用在几个方面有所不同。商用运输飞机通常在人类无法生存的物理环境中运行。在飞行中,环境空气可能极其寒冷干燥,并且可能含有高浓度的臭氧。在地面上,环境空气可能炎热、潮湿,并含有许多污染物,如颗粒物、气溶胶和碳氢化合物。这些条件从地面操作到飞行变化很快。炎热天气、高湿度的地面条件通常决定了空调设备的热容量,而飞行条件决定了供应空气压缩机的容量。最大加热要求可以通过寒冷天气的地面或飞行操作来确定。除了基本的安全要求外,ECS 还应为乘客和机组人员提供舒适的客舱环境。由于乘客座位密度高,这带来了独特的挑战。此外,飞机系统必须重量轻、便于快速检查和维修、高度可靠、能够承受飞机振动和机动载荷,并能够补偿各种可能的系统故障。
1989 年巴黎航空展上,飞行员在超低空发动机故障后成功从米格 29 中弹射,K-36D 弹射座椅引起了公众的广泛关注。K-36D 是俄罗斯高性能飞机的标准设备,在 0-755 KEAS 速度下弹射仍能幸存。1993 年,启动了一项外国比较测试 (FCT) 计划,以评估苏联设计的 K-36D 弹射座椅。该计划的目标是增加美国空军/美国海军对俄罗斯弹射座椅技术现状的了解,证实或反驳俄罗斯对 K-36D 弹射座椅和相关人员设备性能的说法,确定苏联弹射座椅技术和机组人员设备与开发扩大美国空军/美国海军逃生系统性能范围的技术基础的相关性,并发展美国和俄罗斯技术团队之间的工作关系。该项目包括从改装的米格 25 飞机上以 2.5 马赫的速度在 56,000 英尺的高度进行八次弹射,以及以 755 KEAS 的速度进行三次火箭滑橇测试。本报告讨论了 K-36 FCT 计划和弹射测试的结果,并将 K-36D 的性能与当前的西方弹射座椅进行了比较。
1989 年巴黎航空展上,飞行员在超低空发动机故障后成功从米格 29 中弹射,K-36D 弹射座椅引起了公众的广泛关注。K-36D 是俄罗斯高性能飞机的标准设备,在 0-755 KEAS 速度下弹射仍能幸存。1993 年,启动了一项外国比较测试 (FCT) 计划,以评估苏联设计的 K-36D 弹射座椅。该计划的目标是增加美国空军/美国海军对俄罗斯弹射座椅技术现状的了解,证实或反驳俄罗斯对 K-36D 弹射座椅和相关人员设备性能的说法,确定苏联弹射座椅技术和机组人员设备与开发扩大美国空军/美国海军逃生系统性能范围的技术基础的相关性,并发展美国和俄罗斯技术团队之间的工作关系。该项目包括从改装的米格 25 飞机上以 2.5 马赫的速度在 56,000 英尺的高度进行八次弹射,以及以 755 KEAS 的速度进行三次火箭滑橇测试。本报告讨论了 K-36 FCT 计划和弹射测试的结果,并将 K-36D 的性能与当前的西方弹射座椅进行了比较。
AEHF 系统由地球同步轨道上的卫星组成,其吞吐量是 1990 年代 Milstar 卫星的 10 倍,用户覆盖范围大幅提高。最后一颗 AEHF 卫星于 2020 年 3 月 26 日发射,是美国太空军的首次发射。AEHF 可在南北极之间提供 24 小时不间断的全球覆盖。AEHF 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。各部分将以 75 bps 到大约 8 Mbps 的指定数据速率提供通信。空间段由在轨卫星系统组成,利用交联通信实现完整的卫星间通信。任务控制段控制在轨卫星、监测飞行器健康状况并提供通信系统规划和监测。该段具有很强的生存力,拥有多个控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有军种和国际合作伙伴使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。太空系统司令部 (SSC) 负责采购太空和地面部分以及太空部队终端部分。