根据“ SFDR授权法规的问和答案(Q&A)(委员会授权法规(EU)2022/1288)”,日期为2022年11月17日,考虑到“ 2023年4月12日的咨询委员会”,欧洲委员会的共同委员会的咨询委员会,授权的第25、26和27点。 (PAI 1除外),所有金融产品的所有直接和间接投资都为投资公司或主权提供资金。
摘要:本文探讨社会责任与商业成功的关系,以河南知名零售企业发东来集团的实践为例,分析其在社会责任方面的思路和具体举措,探讨这些实践对企业商业成功的影响,提出企业实现可持续发展的路径。社会责任不仅是企业的道德和法律义务,也是实现长期商业成功和可持续发展的关键因素。
面对气候变化的甘蔗(囊式冠状动脉)的种植需要强大的策略来管理害虫,疾病和杂草。这项系统的审查在当前实践中暴露了关键的定义,并强调了对气候自适应策略的需求。气候变化差异化影响了各个地区的害虫行为,疾病的进展和杂草的生长,但缺乏特定区域的反应会损害有效的管理。审查强调了考虑特定气候条件的局部方法的必要性以及预测有害生物和疾病暴发的预测模型的发展。这些模型包括决策支持系统(DSS),支持向量机(SVM),易感性暴露感染性(SEIR)模型,地理信息系统(GIS),物种分布模型(SDMS),农业生产系统模拟器(APSIM)和Integrated Pest Management(IPM)。至关重要的策略包括综合害虫和疾病管理,适应性育种,精确农业和持续的创新。精确的农业技术,例如遥感和无人机,可以提早检测和及时干预措施。通过采取这些适应性措施并解决现有的研究差距,甘蔗行业可以在不断发展的气候条件下增强其韧性并保持生产率。
●镍将继续成为电动汽车电池的关键材料,其中含镍的化学物质弥补了2030年全球市场的一半。●镍供应的扩张将继续来自印度尼西亚,占全球镍矿产量的60%,到2030年的40%。●在欧洲,采矿能力最多可以满足电池未来需求的16%。炼油能力可能覆盖15%至理论上的70%,应将分配给其他应用的体积转移到电池上,并计划扩展。●硫酸镍生产运营,可使用可再生能源,并使用湿气脂化技术(例如生物学浸出和压力氧化)的排放分别比行业平均水平分别低63%和70%。印度尼西亚常用的NPI到哑光生产路线的产生的排放量是行业平均水平的5倍。●仅切换到可再生电力来源可以平均减少40%的排放。●采用最佳的废物管理实践和技术(例如,干堆积)和生物多样性保护(例如专用预算的栖息地恢复计划将是确保负责采矿的关键。●需要强大的工业和环境政策,以确保镍的产量变得更加干净,包括扩大欧洲的镍加工能力,与镍富裕的国家建立互惠互利的贸易伙伴关系以及投资于可再生能源基础设施。
分析(LCA)在摇篮到门的方法中,包括所有原材料和流程步骤,即最终产品离开Syensqo的站点门。使用Simapro®9.5LCA软件与EcoInvent数据库v3.9进行计算。结果将1千克的产品称为功能单元,而无需包装。syensqo不承担与本文档中提供的信息有关的责任。根据ISO 14040-44标准,使用LCA结果支持旨在披露的比较主张,引起了特殊问题,需要具体的批判性审查。未对这些数据进行批判性审查。
保密、版权和复制:本报告版权归国际海事组织 (IMO) 所有,由 Ricardo Energy & Environment(Ricardo-AEA Ltd 的贸易名称)根据 2021 年 5 月 13 日的 RFP 2020-19 的合同《可持续标准和生命周期温室气体排放评估方法和替代船用燃料标准研究》编制。未经 IMO 事先书面许可,不得全部或部分复制本报告内容,也不得将其传递给任何组织或个人。Ricardo Energy & Environment 对因对本报告所含信息的任何解释或使用或依赖其中表达的任何观点而对任何第三方造成的任何损失或损害不承担任何责任,但上述合同中约定的责任除外
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
●哥伦比亚的森林森林砍伐在环境和经济上都是不可持续的。该国每年损失200,000至300,000公顷的树木覆盖物,以扩大农业和牧场,非法采矿或非法作物。在各个部门,生态系统和市政当局之间的意义上存在显着差异。破坏森林不仅会影响环境。它对受影响社区的经济和社会发展也有负面影响。实际上,森林砍伐减慢了市政级别的人均GDP的融合,对低收入市政当局产生了更大的影响。此外,根据未满足基本需求指数等指标,森林砍伐和减少贫困之间没有相关性。
农村电气化将使该国城乡地区普遍使用电力,符合可持续发展目标 7。微型光伏系统的投入为远离电网的家庭提供了另一种电力服务途径,符合可持续发展目标 7 和 10。用于储能器的锂电池的生产将保证农村地区不间断地获得电力服务,符合可持续发展目标 7 和 9。可再生能源将使该国实现可持续发展,符合可持续发展目标 7、11 和 13。能源效率将为该国的可持续发展带来新的机遇,符合可持续发展目标 11。通过生产绿色氢气,将有可能减少化石资源能源的使用,符合可持续发展目标 7、12 和 13。用于电动汽车的锂电池的制造将有助于减少化石燃料的使用和二氧化碳的排放,符合可持续发展目标 7 和 13。
低碳氢是 2050 年实现净零排放的重要因素。生物质制氢是一种很有前途的生物能源,结合碳捕获和储存 (BECCS) 方案,可以生产低碳氢并产生预计需要的二氧化碳去除 (CDR),以抵消难以减少的排放。在这里,我们设计了一个用于生物质制氢并结合碳捕获和储存的 BECCS 供应链,并以高空间分辨率量化欧洲制氢和 CDR 的技术潜力。我们考虑对粮食安全和生物多样性影响最小的可持续生物质原料,即农业残留物和废弃物。我们发现,这种 BECCS 供应链每年最多可生产 1250 万吨 H 2(目前欧洲每年使用约 10 万吨 H 2)并从大气中每年去除多达 1.33 亿吨 CO 2(占欧洲温室气体排放总量的 3%)。然后,我们进行地理空间分析,量化生物质原料所在地与潜在氢气用户之间的运输距离,发现 20% 的氢气潜力位于难以电气化的行业 25 公里以内。我们得出结论,用于从生物质生产氢气的 BECCS 供应链代表了一个被忽视的近期机会,可以产生二氧化碳去除和低碳氢气。
