这种交流是按照美国纳税人费用印刷,出版或生产和传播的。本演讲中提供的信息仅旨在作为技术法律标准的一般非正式摘要。无意取代其基于的规定。我们鼓励听众成员参考适用的法规,以获取有关适用于他们的要求的完整和当前信息。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
加纳在2012年将轮状病毒疫苗(Rotarix 1剂量介绍)引入了常规国家免疫计划,并于2020年改用其他产品(Rotavac 5剂量陈述)。rotavac的价格较低(rotarix $ 0.85 ves $ $ 2.15)和较小的冷链足迹,但每种方案需要更多剂量(三个对二)。这项研究估计了与每种产品相关的供应链和服务交付成本,切换产品所涉及的成本,并比较了未来十年两种产品的成本效益。,我们使用从该国14个地区的六个地区收集的主要数据估计了与Rotarix和Rotavac(评估5剂量和10剂介绍的评估5剂量和10剂量演示)相关的供应链和服务交付成本。,我们使用政府提供的主要线人访谈和财务记录收集的信息估计了从rotarix转换为rota-vac的成本。所有费用均在2020年US $中报告。,我们使用Univac决策支持模型来评估Rotarix和Rota-Vac(5剂量或10剂量或10剂式演示)的成本效益(每次残疾调整后的终身年份(Daly)避免了从政府和社会角度避免的成本效益),而无疫苗接种,而没有疫苗接种,并且在每个疫苗接种中,以及在彼此之间,以及在十年中,超过十年年度(2020年至2020年至2020年至2020年)。我们进行了概率敏感性分析和其他阈值分析。Rotarix的供应链和服务提供的经济成本为2.40美元,Rotavac 5剂量为1.81美元,Rotavac 10剂量为1.76美元。从Rotarix转换为Rotavac 5剂量的财务和经济成本分别为453,070美元和883,626美元。与未接种疫苗相比,牛排的每辆避免销售费用为360美元,rotavac 5剂量为298美元,rotavac 10-剂量为273美元。rotavac 10剂量是最具成本效益的选择,并且在付费阈值的愿望超过人均国内生产总值的0.12倍(2020年为2,206美元)时,将具有成本效益。2020年从Rotarix到Rotavac 5剂量的开关是节省成本。
批准 0.075 毫克口服炔诺孕酮片(以下简称炔诺孕酮片)作为非处方每日避孕药是恰当的。提高消费者预防意外怀孕的能力(以及随之而来的医疗、经济和社会危害)的潜在好处超过了该产品在非处方环境中的潜在风险。虽然申请人提交的支持炔诺孕酮片非处方状态适当的数据存在一些局限性,但申请人的项目和其他来源的数据总和是支持的。罕见病、儿科、泌尿科和生殖医学办公室副主任 Christine Nguyen 博士同意批准决定,并签署了一份联合审查报告(主要作者 Anandi Kotak 博士)。
摘要简介:细菌病原体中抗生素耐药性的生长是一种即将来临的全球威胁,只能通过开发新的抗菌药物来避免。有希望的答案可能是核糖开关的靶向,几乎完全在细菌中发现的结构化RNA元素。涵盖的区域:本综述将核糖开关作为新型抗菌药物靶标的潜力。总结了当前可用抗生素的作用机理,然后划定了核糖开关的功能机理。然后,我们讨论了开发新方法的潜力,这些方法在其细菌基因表达的背景下靶向范式核糖开关。专家意见:我们重点介绍了以其功能形式靶向核糖开关的潜在优势,该功能形式嵌入了基因表达中,对细菌存活至关重要。我们强调了这种方法的好处,包括潜在的较高的物种特异性和较低的副作用。
极化和铁电转变温度之间的关系 ( 5 ) – 即它们可能不是软模式铁电体;(ii) 实现铁电性的新物理机制几乎肯定会带来不同的物理缩放趋势表现和不同的温度、压力和时间特性依赖性;(iii) 这些材料可以在室温或接近室温下加工,具有稳健的特性响应,在某些情况下(例如、Al 1-x B x N)为 40
通过利用铁电/铁弹性切换,在压电传感器中提高了提高功率输出和能量密度。但是,一个问题是,稳定的工作周期通常不能仅由压力驱动。通过在部分螺旋的铁电中使用内部偏置场来解决此问题:材料状态的设计使得压力驱动机械加载过程中的铁弹性切换,而残留场在卸载过程中恢复了极化状态。但是,尽管已验证了此方法,但尚未系统地探索具有最佳性能的工程材料状态的设备。在这项工作中,使用部分固定(预先pol的)铁电中的内部偏置场来指导极化开关,从而产生有效的能量收集循环。设备在1-20 Hz的频率范围内进行了测试和优化,并系统地探索了制造过程中预拆平程度对能量收集性能的影响。发现,将铁电陶瓷预先固定到约25%的完全悬垂状态中会导致一种设备,该设备可以在20 Hz处产生大约26 mW cm-3的活性材料的功率密度,先前工作的改善和比常规PiezoeColectrics的高度提前的命令。但是,最大化功率密度可能会导致残余压力,在准备过程中或服务过程中会损害设备的危害。研究了制造成功率与预拆平水平之间的关系,这表明较高的预拆平程度与较高的存活率相关。这为能量转换与设备鲁棒性平衡提供了基础。
新生儿糖尿病(NDM)是一种罕见的遗传疾病,其特征是严重的高血糖需要胰岛素治疗,主要是在第一个6个月内发作,很少在6-12个月之间。该疾病可以分为瞬态(TNDM)或永久性新生儿糖尿病(PNDM),也可以是综合征的组成部分。最常见的遗传原因是6q24染色体区域的异常和编码胰腺β细胞(KATP)的ABCC8或KCNJ11基因的突变。在急性期之后,接受胰岛素治疗治疗的ABCC8或KCNJ11突变的患者可以改用降血糖磺酰氟烷(SU)。这些药物关闭了KATP通道结合了钾通道的SUR1亚基并在进餐后恢复胰岛素分泌。此开关的时机可能不同,可能会影响长期并发症。我们描述了两名NDM患者在KCNJ11致病变异时的不同管理和临床结果。在这两种情况下,都使用连续的皮下胰岛素输注泵(CSII)将治疗从胰岛素转换为SU,但在发作后的不同时间。引入glibenclamide后,两名患者保持了足够的代谢控制。在治疗过程中,用C肽,果糖胺和糖化血红蛋白(HBA1C)评估胰岛素分泌,这些胰岛素是正常范围内的。在新生儿或糖尿病的婴儿中,基因检测是必不可少的诊断工具,应考虑KCNJ11变体。新的修改必须考虑口服glibenclamide的试验,从胰岛素(NDM治疗的第一线)切换。这种疗法可以改善神经系统和神经心理学结局,特别是在较早的治疗开始的情况下。
Cisco宣布了Cisco DNA期限4500-X开关的销售和截止日期。订购受影响产品的最后一天是2023年9月5日。拥有活跃服务合同的客户将继续获得Cisco技术援助中心(TAC)的支持,如EOL公告的表1所示。表1描述了受影响产品的寿命终结里程碑,定义和日期。表2列出了受此公告影响的产品零件号。对于拥有活跃和付费服务和支持合同的客户,将根据客户服务合同的条款和条件提供支持。
1 N. H. D. Khang,T。Shirokura,T。Fan,M。Tahahashi,N。Nakatani,D。Kato,Y。Miyamoto,2 H. Wu,D。Turan,Q。Pan,C.-Y. Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1092 H. Wu,D。Turan,Q。Pan,C.-Y.Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Yang,G。Wu。下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109下巴,H.-J。Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Lin,C.-H。莱,张,M。Jarrahi,3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1093 K. Gary,C。4 Y. J.A. b。 Huai,18(6),33(2008)。5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1095 W.-G。 Wang,M。Li,St.Eageman和C. L.6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1096 T. Kawahara,K。Ito,R。Take,7 A. 7 A.8 A.J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。10 10 J. E. E.11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用10911 K. Gary,I。M。Miron,C。12 C. O. Avci。A. Katine,应用109A. Katine,应用10913 N. H. D. Khang和P. N. Hai,应用物理信函117(25),252402(2020)。14 Y. Takahashi,Y。Takeuchi,C。Zhang,B。Jinnai,S。Fukami和H. Ohno,应用物理信函114(1),012410(2019)。15G.Mihajlović,O。Mosendz,L。Wan,N。Smith,Y。Choi,Y。Wang和J.16 S. Fukami,T。Anekawa,C。Zhang和H. Ohno,自然纳米技术11(7),621(2016)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y. Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y.Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。