1. Reyes‑Habito CM、Roh EK。化疗药物的皮肤反应和癌症的靶向治疗:第二部分。靶向治疗。J Am Acad Dermatol 2014;71:217.e1‑217.e11。2. Allegra CJ、Rumble RB、Hamilton SR、Mangu PB、Roach N、Hantel A 等。RL 扩展转移性结直肠癌的 RAS 基因突变检测以预测对抗表皮生长因子受体单克隆抗体疗法的反应:美国临床肿瘤学会。J Clin Oncol 2016;34:179。3. Coppola R、Santo B、Ramella S、Panasiti V。表皮生长因子受体抑制剂的新型皮肤毒性。一例接受西妥昔单抗治疗的转移性结直肠癌患者出现擦烂样皮疹。 Clin Cancer Investig J 2021;10:91-2 4. Lacouture ME。EGFR 抑制剂的皮肤毒性机制。Nat Rev Cancer 2006;6:803-12。5. Eilers RE Jr.、Gandhi M、Patel JD、Mulcahy MF、Agulnik M、Hensing T 等。接受表皮生长因子受体抑制剂治疗的癌症患者的皮肤感染。J Natl Cancer Inst 2010;102:47-53。6. Elmariah SB、Cheung W、Wang N、Kamino H、Pomeranz MK。系统性药物相关性间擦疹和屈侧皮疹 (SDRIFE)。Dermatol Online J 2009;15:3。 7. Weiss D、Kinaciyan T. 甲芬那酸诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE)。JAAD Case Rep 2019;5:89-90。8. Kumar S、Bhale G、Brar BK。氟康唑诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE):一种常用药物的罕见副作用。Dermatol Ther 2019;32:e13130。9. Li DG、Thomas C、Weintraub GS、Mostaghimi A. 强力霉素诱发的对称性药物相关性擦擦和屈侧皮疹。Cureus 2017;9:e1836。10. Moreira C、Cruz MJ、Cunha AP、Azevedo F. 对称性
在这项工作中,在介孔TiO 2层(宿主)的敏化中研究了脱氧胆酸(DCA)作为coadsorbent的作用,其对称的羧基硫胺氰胺染料(来宾)。不同的方法,旨在减少H-聚集并最大程度地减少宿主活性位点的氰氨酸分子和DCA之间的竞争,从而改善太阳能电池的效率。含有羧基锚固组的亨氏丁胺的产量良好。氰烷在甲醇和二甲醇和二甲基甲酰胺溶液中的紫外线吸收归因于完全允许的电子跃迁(1ππ∗),以及NIR地区的荧光发射,在地面和激发状态下都有任何聚集的证据。TD-DFT计算,以研究这些化合物在其地面和激发电子状态中的几何和电荷分布。固态光体物理学表明,氰基在TIO 2上表现出极好的吸附,这可以通过结构中的-COOH部分的存在来证明。光物理测量结果表明,染料和DCA的最佳浓度,这导致了TiO 2表面上氰氨基H-聚集的有效抑制,此外还允许大染料负荷。通过循环伏安法鉴定染料的同性恋和Lumo能级,在染料敏化太阳能电池(DSSC)中,基于TIO 2介孔光阳极在染料敏化的太阳能电池(DSSC)中,在可接受的限制内显示氧化和还原电位。组装的DSSC已显示出电气参数和效率的大幅度改善。
因为它与某些类人猿的红色臀部相似。5 特定部位(如腋窝和腹股沟)出现特征性皮疹,而没有全身症状或粘膜受累,仍然难以解释。我们的两名患者均在 5 月底就诊,那时是意大利相对炎热潮湿的季节,因此体温和摩擦可能有利于部位受累。过去,SDRIFE 被认为是一种全身性接触性皮炎(IV 型迟发型超敏反应),与先前对接触过敏原(如镍、汞或外用抗生素)的致敏有关,随后在摄入或注射相同过敏原后出现反应。2,6 斑贴试验在大约 50% 的患者中呈阳性反应,尽管它不是诊断的必需条件,诊断主要是临床诊断,在排除皮疹的其他原因后。 6 然而,包括我们的两名患者在内的较近期病例表明,SDRIFE 可以在没有先前接触过敏原致敏的情况下发生,而与全身药物给药有关。5 几位作者报告说,常见的致病药物包括某些抗生素(例如β-内酰胺类、磺胺类和大环内酯类)、抗惊厥药(例如卡马西平和苯妥英)和非甾体抗炎药。5,7,8 阿霉素和其他蒽环类药物用于治疗不同的血液系统恶性肿瘤和实体肿瘤,皮肤和粘膜反应相对频繁,包括脱发、粘膜溃疡、丘疹和黄斑疹。9 据我们所知,这是第一例在阿霉素化疗期间报告的 SDRIFE 病例,而阿莫西林以前曾与 SDRIFE 和其他皮疹有关。8
这种开创性的解决方案是专门建立的,可以满足面临最复杂威胁的客户的要求,从而使运营独立性和与联盟合作伙伴的无缝合作。Maxam链接旨在支持未来的互操作性标准,同时还确保了旧模式和设备互操作性以及满足现有平台的接口要求。它是出价/1650/1系列的直接拟合,形式和功能替代,bid/950和bid/1280提供了无缝的过渡,同时也可以替代kg-84a和kg-84c。
据我们所知,这是第一例与使用 GH 促泌剂有关的 EMN 病例。由于此类制剂供应充足,医生必须意识到这种副作用,并反对在没有医学指征的情况下使用它们,同时考虑到 EMN 恶性转化的风险,尤其是
通过直接数值模拟研究了经典对称水平对流,瑞利数 Ra 最大为 3 × 10 12 ,普朗特数 Pr = 0 . 1、1 和 10 。对于这两种设置,在热量和动量传输方面的全局量非常一致。与 Shishkina 和 Wagner(Phys. Rev. Lett.,第 116 卷,2016,024302)类似,我们发现努塞尔特数 Nu 与 Ra 的缩放转变在 10 8 ⩽ Ra ⩽ 10 11 的区域中。在临界 Ra 以上,流动经历稳态-振荡转变(小 Pr )或从稳态转变为具有分离羽流的瞬态(大 Pr )。振荡开始于 Ra Pr − 1 ≈ 5 × 10 9 处,分离羽流开始于 Ra Pr 5 / 4 ≈ 9 × 10 10 处。这些开始与缩放转变的开始相吻合。
一、SRAM 静态随机存取存储器 (SRAM) 是一种静态存储单元,它使用触发器来存储每位数据。它广泛应用于各种电子系统。SRAM 存储器中的数据不需要定期刷新。与其他存储单元相比,它速度更快,功耗更低。正因为如此,SRAM 是 VLSI 设计师中最受欢迎的存储单元。 SRAM 操作 传统的 6T SRAM 单元由两个背靠背连接的反相器组成。第一个反相器的输出连接到第二个反相器的输入,反之亦然。基本上,SRAM 执行三种操作,即保持、读取和写入操作。 保持操作:在待机操作或保持操作中,字线 (WL) 处于关闭状态。连接到字线和 B 和 BLB 线的存取晶体管也处于关闭状态。为了使 SRAM 以读取或写入模式运行,字线应始终处于高电平。 写入操作:存储数据的过程称为写入操作。它用于上传 SRAM 单元中的内容。写入操作从分配要写入 Bit 的值及其在 Bit' 的互补值开始。为了写入“1”,Bit 预充电高电压,并将互补值“0”分配给 Bit'。当通过将 WL 置为“高”将 M5 和 M6 设置为 ON 状态时,在 Bit 处分配的值将作为数据存储在锁存器中。M5 和 M6 MOS 晶体管设计得比单元 Ml、M2、M3 和 M4 中相对较弱的晶体管强得多,因此它们能够覆盖交叉耦合反相器的先前状态。读取操作:恢复数据的过程称为读取操作。它用于获取内容。读取操作首先将字线“WL”置为高电平,这样在将位线和位线预充电至逻辑 1 后,访问晶体管 M5 和 M6 均将启用。第二步是将存储在数据和数据线中的值传输到位线,方法是将位保留为其预充电值,并通过 M4 和 M6 将位线放电至逻辑 0。
代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
在非水氧化还原流量电池中的交叉仍然是对这些设备的cy稳定性的关键挑战。使用双极氧化还原活性材料是缓解跨界的新兴策略。在本文中,我们报告了源自异地碱氮氧化物的双极rom的第一个例子,这是一个环类别,该类别在更常用的哌啶中给出了许多拟合,包括更大的稳定性和200mv更高的氧化潜力。通过便捷的合成转化,未取代的异丁氏硝氧化物被硝化,从而提供了一种新型的双极分子,5-硝基-1,1,1,3,3-四甲基甲硅烷基-2-羟基(NTMIO)。该材料是用电化学材料进行的,在该材料中给出了两个可逆峰,开路电压为2.1V。ntmio作为活性材料,在该模型中,对于超过70个循环,观察到氧化和还原氧化还原夫妇均观察到稳定的循环。
1。Psychalinos,C.,Kasimis,C。和Khateb,F。(2018)。使用单个输出操作式传感器管放大器多输入单输出通用双Quad滤波器。AEU International电子与通信杂志,93,360-367。 https://doi.org/10.1016/j.aeue.2018.06.037 2。Bano,S.,Narejo,G。B.和Shah,S。U. A. (2019)。 低电压单端单端操作性转导放大器用于低频应用。 无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。 Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Bano,S.,Narejo,G。B.和Shah,S。U.A.(2019)。低电压单端单端操作性转导放大器用于低频应用。无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Ali,H。K.和Abdaljabar,J。S.(2017)。使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。Mathad,R。S.(2014)。使用操作转导扩展fir的低频滤波器符号。IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。Rezaei,F。和Azhari,S。J.(2011)。超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。Abuelma'atti,M。T.和Quddus,A。(1996)。程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750