图 2。g-NK 细胞的 ADCC 活性优于 cNK 细胞,并可改善连续杀伤。(A) 与 cNK 相比,g-NK 细胞的 ADCC 靶细胞杀伤率(1E:1T)明显更高。(B) 通过添加 dara,g-NK 和 cNK 的靶细胞杀伤率均有所提高,但如靶标存活概率 (1E:1T) 曲线所示,G-NK 细胞的靶标杀伤速度明显更快(曲线斜率)。(C) g-NK 细胞 + mAb 的连续杀伤率(1E:2T+)明显更高。绘制的杀伤事件发生在具有一个或多个突触的孔中。(D) 纳米孔的代表性图像。P 值由 Fisher 精确检验确定。使用 Kaplan-Meier 分析和对数秩检验 (Mantel-Cox、趋势和 Gehan-Breslow-Wilcoxon) 生成 P 值。
背景:自体 CAR T 细胞疗法彻底改变了血液系统恶性肿瘤的治疗。然而,使用患者的 T 细胞进行制造限制了这些疗法的广泛使用。使用健康供体 T 细胞制造的现成同种异体 CAR T 细胞可能通过提供产品的一致性、即时可用性和可扩展制造的便利性来解决这些限制。然而,对同种异体 CAR T 细胞的临床反应可能受到免疫排斥的限制。以删除 β2-微球蛋白为中心的免疫“隐身”策略避免了 CD8 T 细胞的排斥,但可能引起强烈的 NK 细胞反应性。此外,CAR T 细胞活化后诱导 HLA II 类表达可能会增加 CD4 T 细胞排斥的风险。我们之前表明,RFX5(HLA I/II 类基因的转录调节因子)的失活可有效抵抗 T 细胞排斥并降低 NK 细胞同种异体反应性。在这里,我们描述了一种额外的抗排斥策略,即失活 CD58 和 ICAM-1,它们是同种反应性 T/NK 细胞有效识别和溶解所需的免疫突触的关键组成部分。同种异体 CAR T 细胞中任一基因的敲除均降低了同种异体反应性,并与 RFX5 KO 结合使用可带来更大的生存益处。方法:使用 CRISPR/Cas9 技术敲除 RFX5、B2M、CD58、ICAM-1 和/或 TRAC。在使用同种异体 T 细胞、NK 细胞或 PBMC 的混合淋巴细胞反应 (MLR) 测定中评估了具有隐形修饰的细胞的生存率。在连续刺激测定中评估了 CAR T 细胞的细胞毒性。结果:靶向删除 RFX5、CD58 和 ICAM-1 的 CAR T 细胞表现出增强的生存率,而未经修饰的 CAR T 细胞很快被 HLA 不匹配的 T 细胞消灭(p<0.0001)。 CD58 KO 与 RFX5 KO 的组合增强了 MLR 测定中的逃避(p<0.0001),而未隐藏的对照和 B2M KO 细胞分别被同种异体 T 细胞和 NK 细胞消除。CD58 KO 和 ICAM-1 KO CAR T 细胞中的 HLA 分子表达不受影响,因此不会引发同种异体 NK 细胞反应性。重要的是,CD58 或 ICAM-1 的失活不会影响细胞毒活性或引发 IL-2 独立的 CAR T 细胞生长。结论:靶向删除 CD58 或 ICAM-1 可有效降低同种异体 CAR T 细胞的 T 细胞排斥,而不会触发 NK 细胞排斥或影响效应功能,并与 RFX5 KO 协同作用。现成的免疫逃避 CAR T 细胞具有抵抗排斥和实现改善治疗反应的潜力。
我们写信的目的是对传统银行、银行即服务 (BaaS) 提供商(例如 Stripe、Finastra、Synapse 和 Marqueta)以及金融科技 (fintech) 实体(例如 Venmo、Cash App、Yotta 和 Chime)之间的合作关系表示担忧。这些合作关系的快速发展可能会损害消费者的利益,同时对我们的银行体系和经济的稳定构成更广泛的威胁。1 这些合作伙伴关系将银行传统上提供的服务(例如存款、储蓄账户和借记卡)打包成一种金融科技替代品,使用 BaaS 提供商与传统银行进行对接。2 例如,Synapse Financial (Synapse) 充当金融科技公司和受监管银行之间的中介,帮助将消费者资金从 Yotta 等应用程序(一款旨在将储蓄策略游戏化的应用程序)转移到银行。 3 Synapse 的倒闭损害了超过 10 万名消费者和 2.65 亿美元的存款,4 这是 BasS 提供商和金融科技公司缺乏监管所造成危害的一个突出例子。
根据明尼苏达州 2023 年法律第 60 章第 12 条第 73 节的规定,明尼苏达州商务部聘请第三方对明尼苏达州社区太阳能花园计划进行研究,如明尼苏达州法规 § 216B.1641 所述。经过竞争性招标程序,商务部选择了由大平原研究所 (GPI) 领导的项目团队,由国家州能源官员协会 (NASEO) Synapse Energy Economics, Inc. (Synapse) 提供分包专业知识。以下提供了这三个组织的概述。在本报告中,项目团队统称为“报告作者”。
所有 Thermaltake TT RGB PLUS 产品均可连接到 Razer Chroma 生态系统。安装 TT RGB PLUS 软件和 Razer Synapse 3。
突触是大脑信息传递的基本单位。来自双极疾病,精神分裂症和自闭症谱系障碍的研究表明,突触水平的病理学起源。相比之下,突触功能障碍通常被认为是神经退行性疾病的终点和过度神经元死亡的结果。新兴证据强调了神经退行性疾病中神经发育的突触成分,强调了所有神经系统疾病中的突触特征重叠。突触功能障碍和疾病病理学的相关性已得到很好的确定,但是对预防或逆转突触损害的机械因果关系和实用策略的理解仍然是未满足的需求。本期特刊旨在汇总原始研究和文献评论,这些研究提供了对神经精神病,神经发育和神经退行性疾病中突触功能障碍机制的见解。主题包括但不限于突触组件,形成和可塑性,神经递质释放以及在神经疾病背景下研究突触生物学的高级技术。
在神经形态计算中,人工突触提供多权重电导状态,该状态基于来自神经元的输入而设置,类似于大脑。除了多个权重之外,突触还可能需要其他属性,并且可能取决于应用,这需要从相同的材料中生成不同的突触行为。在这里,我们测量基于磁性材料的人工突触,这些磁性材料使用磁隧道结和磁畴壁。通过在单个磁隧道结下方的畴壁轨道中制造光刻凹口,我们实现了 4-5 个稳定的电阻状态,这些状态可以使用自旋轨道扭矩进行重复电控制。我们分析了几何形状对突触行为的影响,结果表明梯形设备具有非对称权重更新和高可控性,而直线设备具有更高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中,以显示特定于应用的突触功能的实用性。通过实施应用于流式 Fashion-MNIST 数据的人工神经网络,我们表明梯形磁突触可用作高效在线学习的元生函数。通过实施用于 CIFAR-100 图像识别的卷积神经网络,我们表明直磁突触由于其阻力水平的稳定性而实现了近乎理想的推理精度。这项工作表明多权重磁突触是一种可行的神经形态计算技术,并为新兴的人工突触技术提供了设计指南。
摘要 - 纤维形的备忘录吸引了人们作为潜在的可穿戴电子产品的关注。在这里,为人工突触和神经形态计算提供了带有纤维形状的Cu-ion扩散的备忘录。纤维形扩散的备忘录在扫描扫描下表现出逐渐的电导调节特性。Memristor成功地实现了典型的突触可塑性,包括EPSC,PPF,PPD,LTP/LTD和学习行为。散射回忆器的活性Cu 2 +与生物突触中的Ca 2 +扩散相似,这是实现突触可塑性功能的基础。纤维形的Cu 2 +扩散的回忆录充当人造突触为下一代可穿戴神经形态计算系统铺平道路。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。