摘要 目的——本文回顾了工业 4.0 与增材制造 (AM) 的协同作用,并讨论了数据驱动制造系统与产品服务系统的集成作为工业 4.0 革命的关键组成部分。本文旨在通过数字化、数据传输、标记技术、工业 4.0 中的信息和智能功能等工具,强调工业 4.0 对 AM 的潜在影响。 设计/方法/方法——在工业化的各个阶段,制造业对数据的使用和依赖不断增加。在对工业 4.0 和 AM 的回顾中,我们讨论了成功的五大支柱,即物联网 (IoT)、人工智能、机器人技术和材料科学,它们将使供应商、生产者和用户之间的互动和相互依存达到新的水平。研究了 AM 功能的独特效果,尤其是大规模定制和轻量化,结合工业 4.0 中的数据和物联网集成,以支持更高的效率、更大的实用性和更环保的生产。这项研究还说明了如何通过使用物联网和 AM 实现工业 4.0 制造业的数字化,从而实现新的商业模式和生产实践。结果 - 讨论说明了结合物联网和 AM 的潜力,可以摆脱传统大规模生产的约束和限制,同时实现经济和生态节约。还应注意的是,这延伸到通过模拟复杂的生产流程和操作系统实现日益复杂的零件的敏捷设计和制造。本文还讨论了工业 4.0 和 AM 在基于实时数据/反馈提高产品结果的质量和稳健性方面的关系。原创性/价值 - 这项研究表明,结合物联网和 AM 的研究方法如何能够创造实践上的重大变化,从而改变生产和供应模式,从而有可能减少工业系统和产品生命周期对生态的影响。本文展示了工业 4.0 和 AM 的融合如何重塑制造业的未来,并讨论了其中涉及的挑战。
摘要 目的——本文回顾了工业 4.0 与增材制造 (AM) 的协同作用,并讨论了数据驱动制造系统和产品服务系统的集成作为工业 4.0 革命的关键组成部分。本文旨在通过数字化、数据传输、标记技术、工业 4.0 中的信息和智能功能等工具强调工业 4.0 对 AM 的潜在影响。 设计/方法/方法——在工业化的各个阶段,制造业对数据的使用和依赖不断增加。在对工业 4.0 和 AM 的回顾中,我们讨论了成功的五大支柱,即物联网 (IoT)、人工智能、机器人技术和材料科学,它们将使供应商、生产者和用户之间的互动和相互依存达到新的水平。研究了 AM 功能的独特效果,尤其是大规模定制和轻量化,结合工业 4.0 中的数据和物联网集成,以支持更高的效率、更大的实用性和更环保的生产。这项研究还说明了通过使用物联网和 AM,工业 4.0 的制造业数字化如何实现新的商业模式和生产实践。结果 - 讨论说明了结合物联网和 AM 的潜力,可以摆脱传统大规模生产的约束和限制,同时
摘要:在过去的几十年里,大数据促进并改善了我们在医学研究和临床领域的日常工作;实现这一点的策略是了解如何组织和分析数据,以实现最终目标,即改善医疗保健系统,包括成本和收益、生活质量和患者结果。本综述的主要目的是说明大数据在医疗保健领域的最新发展、特点和架构。我们还想展示大数据在区块链和人工智能等最新技术中的不同应用和主要机制,认识到它们的优点和局限性。也许,医学教育和数字解剖学是尚未开发的领域,正如我们所提议的那样,研究它们可能会有利可图。使用这些不同的技术可以彻底改变医疗保健系统。因此,我们正在解释这些系统的基础,重点关注医疗领域,以鼓励医生、护士、生物技术和其他医疗保健专业人员参与并创建更高效、更有效的系统。
值此良机,请允许我们评估 2021 年的经济表现以及 2022 年印尼央行的经济前景和政策方向,并将其总结为“振作起来并保持乐观:协同与创新,促进经济复苏”这一主题。我们认为这一主题非常适合展示我们共同的热情,即摆脱新冠疫情的影响,2021 年国民经济将继续改善。乐观地讲,如果上帝保佑,2022 年国民经济将更加强劲。通过政府(中央和地区)、印尼央行、金融体系稳定委员会 (KSSK - Komite Stabilitas Sistem Keuangan)、银行业和支付系统、商界和各方之间的强有力政策协调,协同作用将继续加速国民经济复苏,同时保持宏观经济和金融体系稳定。创新,既包括协调国家经济政策,包括疫情期间为国家预算提供资金的财政货币协调,也包括通过数字化支付系统、全国运动(Gernas - Gerakan Nasional)和印尼自豪制造(BBI - Bangga Buatan Indonesia)和印尼自豪旅行(BWI - Bangga Berwisata di Indonesia)来加速数字化和国家经济金融包容性。正是这种国家经济政策的协同作用和创新,我们需要继续加强,以便我们对 2022 年及以后几年的国家经济复苏保持乐观,迈向先进的印尼。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
uibu sftvmu jo tvddfttgvm o boe votbujtgbdupsz sf tvmut 6tjoh uif sjhiu ufdiojrvft boe cf joh ijhimz qsfdjtj tipvme cf frvbmmz xfmm voefs tuppe boe bqqmjfe up pcubjo uif ijhi ftu rvbmjuz jtpmbodfsj udfgpsj *otv lfz lfz lfz bsfbt bsfbt wf gps tjnqmjmdb ujpo pg ufdiojrvft boe qspdfevsft fo tvsf b npbcumf qsfdpub m hf up efwfmpqjoh b dpnqmpqjoh b dpnqmfy CFS PG DMJOJDJBOT
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
AML和MD的部分原因是转录因子(即Runx1,NPM1)中的遗传替代,以及表观遗传修饰的基因(即MLL,DNMT3A),导致肿瘤抑制基因失活,从而使不成熟细胞的扩散产生。3在DNA甲基转移酶(DNMT)中的改变特异性导致DNA高甲基化,这有助于通过启动子失活通过启动子灭活基因沉默,并且可以由HMA靶向,HMA可以模仿天然核苷残基并在DNA中取消核苷。一旦合并,HMAS被DNMT1作为胞嘧啶处理,但是这种相互作用会产生一种不可逆的DNA-DNMT1加合物,需要DNA损伤修复才能解决。这会导致DNMT1的损失,因为DNA蛋白加合物被DNA损伤响应途径降解。9损失
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示