到2030截至2024年12月31日,印度总安装产能(OR 217.62 GW)的47.1%是基于非化石燃料的能源。在拉贾斯坦邦,非化石燃料资源的总安装容量已达到34.33 GW。政府已提出了几项倡议,以促进城市地区的绿色能源。2024年2月,发射了PM Surya Ghar-Muft Bijli Yojana,以通过利用太阳能来改变该国的能源景观。此外,印度的废物对能源计划旨在支持建立废物到能源项目,以生成来自城市,工业和农业废物/残留物的沼气/生物/生产者/生产者或syngas。为了促进公共交通的电气化,政府于2023年8月16日推出了“ PM-Ebus Sewa计划”,目的是通过在公私合作伙伴关系(PPP)模型上部署10,000辆电动公交车以及在城市中央援助20,000亿卢比的核心援助收率的基础设施的开发中扩大公交车运营。根据2011年的人口普查,跌至30万至400万的人口规模有资格参加该计划。根据这一计划,拉贾斯坦邦的所有八个合格城市,即阿杰梅尔,阿尔瓦尔,比卡内尔,比尔瓦拉,乌代浦,斋浦尔,科塔和乔德布尔都参加了。这八个城市总共批准了675个E-Bus。
提供了10个商业和10个示范量表DTL工厂的简要详细信息,它们是运营或后期开发的,分布在11个国家 /地区。商业规模的植物主要是(9)热解技术,而演示操作是快速热解(6)和水热液化的混合物(4)。木材和森林残留物是所有商业植物的选择。生产的生物油作为加热或在石油炼油厂中进行加工的燃料出售。在大多数情况下,还产生了诸如电力,合伙人和化学物质等副产品,以改善植物经济性。例如,美国的红色箭头设施从木材残基快速热解产生特种化学物质。最大的植物每年生产约8000万升生物油。通常,原料生产商,例如纸浆厂和最终产品生产石油炼油厂与合资企业的技术开发商合作。商业规模的DTL工厂需要对8000万升工厂的8000万美元订单进行大量投资,并通过股本,债务融资,股份和政府赠款等机制进行融资。
摘要:美国和欧盟种植了数百万公顷的覆盖作物,以控制土壤侵蚀、土壤肥力、水质、杂草和气候变化。尽管只有一小部分覆盖作物被收获,但不断增长的覆盖作物种植面积为生物燃料行业生产生物能源提供了新的生物质来源。油菜籽、向日葵和大豆等油籽作物是商品,已用于生产生物柴油和可持续航空燃料 (SAF)。其他覆盖作物,如黑麦、三叶草和苜蓿,已在小规模或中试规模上进行了测试,以生产纤维素乙醇、沼气、合成气、生物油和 SAF。鉴于各种生物燃料产品和途径,本综述旨在全面比较不同覆盖作物的生物燃料产量,并概述已采用的提高生物燃料产量的技术。人们设想,基因编辑工具可能会对生物燃料行业产生革命性的影响,覆盖作物供应链的工作对于系统扩大规模至关重要,而且可能需要高耐受性技术来处理生物燃料覆盖作物生物质的高度成分异质性和多变性。
多年的研究致力于寻找实现这一目标的新的高效系统。在光驱动的CO 2降低中,[4]需要光敏剂(PS)来收集太阳能和催化剂(CAT)以减少二氧化碳。两者都可以是同质的或异质的。添加了牺牲电子供体(E-d)以关闭催化循环并再生光敏剂的基态。在同质系统中,PS和CAT均主要是基于过渡金属的,并且很少基于有机物。,[5],[6] [7],尽管贵金属具有出色的光化学和电化学特性(例如ru,ir,re),使用3D金属的环保替代系统(例如mn,Fe,co,ni)正在变得更有竞争力。[8]通常,3D金属仅表现出两个可能的氧化态,从而导致形成了两极的还原产物,例如一氧化碳,甲醛或甲酸或甲酸。分子氢是相关的,选择性差异很大。CO和H 2作为产品(也称为同性气)的混合物构成了以更生态的方式产生燃料的机会[9],要么是这样(用于燃气涡轮机)[10]或通过进一步的反应(例如产生甲醇)。[11]
本文研究了将 CO 2 捕获和储存与替代系统相结合对牛皮纸浆和造纸厂的生物质热电联产 (CHP) 的影响。我们比较了系统的热能、电力和 CO 2 平衡以及 CHP 和 CO 2 捕获系统的替代配置。由于捕获的 CO 2 来自可再生生物质,因此所研究的系统产生负 CO 2 排放。结果表明,纸浆厂和综合纸浆和造纸厂有可能成为生物质电力的净出口国,同时净减少大气中的 CO 2 排放。研究表明,当在生物质综合气化炉联合循环中进行 CO 2 捕获时,当合成气发生 CO 变换反应时,总体 CO 2 减排效果最佳。这种配置将高效的能源转换与高 CO 2 捕获效率相结合。此外,还构建了成本曲线,表明纸浆和造纸厂二氧化碳捕获和储存的成本如何取决于系统配置和二氧化碳运输距离。# 2004 Elsevier Ltd. 保留所有权利。
立即发布 2022 年 4 月 13 日,星期三 Greenview 董事总经理与 Cerilon GTL Inc. 签署谅解备忘录,以扩大 Greenview 工业门户开发项目 艾伯塔省 Valleyview Greenview Council 董事总经理在 4 月 12 日的会议上批准了与 Cerilon Incorporated 的子公司 Cerilon GTL 签署谅解备忘录,以购买 Greenview 工业门户 (GIG) 约 200 英亩(81 公顷)的土地。Cerilon 打算在该地点建造一座价值 28 亿美元的工厂,生产超低硫柴油和航空燃料。Cerilon 提议建造一座日产 24,000 桶的气转液 (GTL) 设施,用于生产清洁、环保、超低硫柴油和专业产品。 Cerilon GTL 工厂将对天然气进行重整,生成氢气和合成气,然后将其转化为费托合成液和蜡,创造过剩的电力供应机会,从而生产出超低硫产品。Cerilon GTL 将把其创新工艺和系统应用于下一代智能制造技术。GTL 工厂还将捕获二氧化碳并实施碳捕获和封存工艺 (CCS),使 Cerilon GTL 工厂成为世界上碳足迹最低的 GTL 工厂。
根据参考文献 [01],本文分析了为印度锡金东区的一个学术镇提供电力的自主混合可再生能源系统的技术经济可行性。该系统考虑的资源包括太阳能、风能、沼气、合成气和水动能,并以电池作为备用。美国国家可再生能源实验室开发的 HOMER Pro 微电网工具被用作模拟和评估工具,用于通过每小时数据输入进行建模。实施了各种约束来限制所考虑组件的最大安装容量。所有组件的技术和财务规格均来自印度当地市场。共分析了 31 种不同资源的可能组合,包括净现值、平准化能源成本、电池存储、排放、面积要求和就业潜力。通过应用一种非常广泛的多标准决策技术(即层次分析法)来确定最佳组合。我们发现,基于光伏-风能-沼气-合成气-水动力-电池的混合可再生能源系统是最佳组合,其平准化能源成本为 0.095 美元/千瓦时。最后,对各种参数进行了敏感性分析,以了解该系统在该地区更广泛应用的行为。
近几十年来,广泛使用化石燃料已导致全球变暖,增加了对环境保护的压力。固体氧化物细胞(SOC)是有希望的电化学能量转换和在高温(600 - 1,000°C)下使用的存储装置。SOC可以在燃料电池模式(固体氧化物燃料电池或SOFCS模式)下运行,在那里它们通过氢或其他能源资源(例如碳氢化合物,CO等)产生电力,也可以在电解模式(固体氧化物电解电池或SOEC模式)中进行操作,从而在其中产生Hygas或Syngas等,从H 2 O和CO供电,并配备H 2 O和Co 2 O和Co Electrictitions Electrictitions Electrictity。当在SOFC和SOEC模式下操作时,它们可以称为可逆的氧化物细胞或RSOC。从根本上讲,已经开发了两种类型的SOC,即管状和刨床设计。管状型SOFC具有长期的稳定性,而平面型SOFC与管状型SOFC相比具有高功率密度,该型SOFC显示出良好的特性,例如高体积功率密度和低电阻。XI等。 估计平面型SOFC内的各种物理参数。 详细构建了该模型,包括气流,传热,传质和电化学反应。 因此,平面型SOFC的性能受结构参数的影响(Xi等人 )。 此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。 XI等。 )。 Thornton等。 )。XI等。估计平面型SOFC内的各种物理参数。详细构建了该模型,包括气流,传热,传质和电化学反应。因此,平面型SOFC的性能受结构参数的影响(Xi等人)。此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。XI等。 )。 Thornton等。 )。XI等。)。Thornton等。)。它在高温(500 - 900°C)下运行,其优点是它可以用宽型燃料(包括氢,甲烷,葡萄球菌,乙醇,沼气等)运行。通过热量和发电(CHP)的结合,可以最大程度地提高80%以上的效率。开发了具有100 kW发电的生物量气体(BG)-SOFC-CHP系统。结果显示出显着的节能效果。这项工作的主要目标是分析与传统能源系统相比的CHP系统的优势(Xi等人SOFC的工作温度会影响细胞中发生的物理和化学过程。这些过程也受到微观结构的影响。计算了表征SOFC阴极的微观结构的阻抗数据。他们通过使用电化学阻抗光谱(EIS)数据发现了SOFC阴极微观结构的有效曲折(Thornton等人在电极的催化活性方面,高温操作有利于使用非私致金属催化剂。Xia等。 在Ni-CEO 2材料上进行了理论计算和实验。 镍的存在增强了H 2吸附,并降低了的能量屏障Xia等。在Ni-CEO 2材料上进行了理论计算和实验。镍的存在增强了H 2吸附,并降低了
粗钢是钢熔炼后的第一种固态,适合进一步加工和转化,可通过两种方式生产(图 1)。这两种工艺通常都遵循两个步骤:1)炼铁——用还原剂将铁矿石(氧化铁)还原为铁;2)炼钢——在炉中将铁转化为钢。更具体地说,这两种工艺使用:1)煤、高炉 (BF)、生铁(纯铁产品)和碱性氧气顶吹转炉 (BOF) 或 2) 合成气(合成气)——氢气 (H2) 和一氧化碳 (CO) 的混合物、竖炉或回转窑、直接还原铁 (DRI) 和电弧炉 (EAF)。目前,大约三分之二的粗钢是通过 BF-BOF 工艺生产的,该工艺使用高炉生产铁,然后使用 BOF 将铁转化为粗钢——其中很大一部分是高品质原始(非回收)粗钢。其余三分之一的粗钢由电弧炉生产。尽管电弧炉使用废钢生产当今大部分再生钢,但它们也可以使用直接还原铁生产原钢。
摘要:非可编程可再生能源的能源积累是能源转型的关键方面。利用可再生能源的剩余电力,电转气工厂可以生产替代天然气 (SNG),可将其注入现有基础设施,进行大规模和长期的能源储存,有助于实现天然气电网脱碳。工厂布局、二氧化碳捕获方法和可能的电力联产可以提高 SNG 合成工厂的效率和便利性。在本文中,提出了一种同时生产 SNG 和电力的系统,该系统以生物质和可再生能源的波动电力为原料,使用基于 Allam 热力学循环的工厂作为动力装置。Allam 动力循环使用超临界 CO 2 作为演化流体,基于气体燃料的富氧燃烧,从而大大简化了 CO 2 的捕获。在所提出的系统中,富氧燃烧是使用生物质合成气和电解氧进行的。通过富氧燃烧产生的二氧化碳被捕获,随后与可再生氢一起用于通过热化学甲烷化生产 SNG。该系统还与固体氧化物电解器和生物质气化器耦合。从能源相关角度分析了整个工厂。结果显示,整体工厂效率在 LHV 基础上为 67.6%(在 HHV 基础上为 71.6%),同时生产大量电力和高热值 SNG,其成分可与现有天然气网络兼容。
