人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。
目前的工作旨在根据基于锆石矿物质在各种钙化温度下制造Na1ÞX Zr 2 Si X P 3-X O 12化合物。在250、500和1000 C中钙化了制造的化合物。钙化温度对制造化合物的结构,晶相和辐射屏蔽特性的影响。X射线衍射衍射仪表明,单斜晶相出现在250 c的钙化温度下,500°C完全转化为高度对称性六边形晶体相。 122Kev。在本研究中对钙化温度对G射线屏蔽行为的影响进行了清晰的影响,当钙化温度从250 C的250 C升高到1000 C时,线性衰减系数在122KeV时的影响增加了218%。©2023韩国核协会,由Elsevier Korea LLC出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了
这项研究的目的是评估从香蕉(Musa paradisiaca L.)和甜橙(柑橘Sinensis l.)果皮中的水提取物中生物合成的银纳米颗粒(AGNPS)生物合成的抗菌活性。使用特定量的香蕉和橙皮提取物以及Agno 3作为前体,成功地将Agnps成功地生物合成。AGNP溶液中明显的颜色变化,在24小时后从黄色转移到深棕色,是AGNP形成的初始指标。uv-vis分光光度计和粉末XRD吸收光谱均用于香蕉皮 - agnps(bpagnps)和橙皮 - agnps(opagnps)均表现出明显的峰,证实了AGNP的存在。此外,FTIR光谱表明存在有助于AGNP合成的酚类化合物。sem和DLS分析表明,两种类型的AGNP的球形均为球形,平均粒径小于100 nm。此外,发现在这项研究中检查的香蕉,橙色和木瓜的果实样品被塞里芽孢杆菌,金黄色葡萄球菌,大肠杆菌和烟曲霉污染,它们使用MALDI-TOF MS进行了分离和鉴定。这项研究还确定了尼日尔,A。Alterata,P。digitatum和F. oxysporum的感染是该地区水果变质的主要因素。均表现出显着的抗菌活性,尤其是针对土壤传播的病原体。A。faecalis和M. morganii(以30 µg/ml的抗氯霉素抗性),以及某些水果变质真菌,例如digitatum和F. oxysporum和F. oxysporum(对2%酮酮的抵抗),以前曾经在研究过,以前曾经研究过,以前曾经在研究过。均表现出显着的抗菌活性,尤其是针对土壤传播的病原体。A。faecalis和M. morganii(以30 µg/ml的抗氯霉素抗性),以及某些水果变质真菌,例如digitatum和F. oxysporum和F. oxysporum(对2%酮酮的抵抗),以前曾经在研究过,以前曾经研究过,以前曾经在研究过。因此,生物型AGNP显示出有效的抗菌剂在医疗环境中应用以及保存食品质量和安全性。
对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
V. Bouquet、F. Baudouin、Valérie Demange、S. Députier、Sophie Ollivier 等人。二维氧化物纳米片种子层对化学溶液沉积合成的 (100)BiFeO3 薄膜生长的影响。《薄膜固体》,2020 年,E-MRS 氧化物薄膜 VII,693,第 137687 页。�10.1016/j.tsf.2019.137687�。�hal-02378433�
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
这项工作确立了用茴香提取物制造的铜纳米果(Cunps)的细胞毒性,抗氧化剂和抗癌作用,尤其是在非小细胞肺癌(NSCLC)上。cunps以两种NSCLC细胞系A549和H1650以剂量依赖性方式引起细胞毒性。在100μg/mL时,CUNPS在A549细胞中降低到70%,H1650细胞中的65%。显示出细胞毒性作用(p <0。05)。乳酸脱氢酶(LDH)相应地在细胞中以很高的比例存在,在测试时证明。及其细胞毒性特性,Cunps表现出较高的抗氧化活性。当纳米颗粒的浓度高(100μg/ml)时,浓缩氧(ROS)的比率降低了多达50%,这反过来又表明抗氧化活性。有很多证据表明Cunps具有抗癌潜力。分子对PI3K/AKT/MTOR途径的影响已经表明,这是对癌症存活至关重要的途径之一。Western印迹分析和QRT-PCR结果表明,在CUNP暴露时,该途径中蛋白质会广泛降解。有趣的是,以100μg/ml的磷酸化下降了高达75%的PI3K,AKT和MTOR(P <0。001)。总之,这些发现说明了CUNPS治疗作用背后的机制,从而使它们成为NSCLC治疗的良好靶标。Cunps具有细胞毒性和抗氧化能力,以及肺癌途径的重大改变,因此可以将其视为抗癌候选者。