使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
Table 1 Lattice parameters of the as-prepared samples Parameters x = 0.0 x = 0.125 x = 0.25 x = 0.375 x = 0.5 β (degree) ±0.05 0.1518 0.1812 0.1940 0.2627 0.8281 D (nm) ±0.05 57.33 48.02 44.87 33.14 10.51 d (Å) 2.5234 2.5221 2.5213 2.5188 2.5149 a (Å) 8.3694 8.3647 8.3622 8.3542 8.3410 V (Å) 3 586.25 585.27 584.75 583.06 580.31 L A (Å) 3.6239 3.6219 3.6208 3.6173 3.6116 l b(Å)2.9585 2.9569 2.9560 2.9532 2.9485γ(Å)0.7495 0.7491 0.7488 0.7481 0.7469 D x(g /cm 3)5.1385 5.2448 5.2448 5.2448 5.3471 5.3471 5.4606 5.4606 5.55848 S(MON 33.15 102.15 P 227.19 190.42 177.98 131.57 41.81 𝜀0.0020 0.0020 0.0024 0.0026 0.0026 0.0036 0.0112δ×10 -4(nm -2)±0.05 3.05 3.04 4.33 4.33 4.96 4.96 9.10 9.10 90.40
化学杀虫剂的环境和人类健康风险已引发了广泛的搜索,以保护储存产品的替代方法。最近,纳米颗粒被认为是合成化学产品的有希望的替代品。在这项研究中,使用cystoseira baccata藻类提取物合成ZnO纳米颗粒(NP),并使用X射线衍射(XRD),傅立叶变换红外(FTIR)和场发射扫描电子显微镜(FE-SEM)进行表征。使用两种不同方法合成了三种不同类型的ZnO NP,ZnO-A,ZnO-B和ZnO-C。对其杀虫活性进行了评估,并将其与化学合成的ZnO-D NPS相对于cow虫象鼻虫,callosobruchus maculatus(F.)(鞘翅目:Chrysomelidae)在储存的cow虫上进行了比较。生物合成的ZnO-A,ZnO-B和ZnO-C NPs对Maculatus的活性较高。确定粒径最小(24.3 nm)的多孔ZnO-A NP是最毒性的纳米颗粒,导致五天后的Maculatus成人死亡率最高。虽然ZnO-D NP是Maculatus C. C. C. c. c. c. c. nps的有效性最低。明显的产卵抑制(35.1至44.9%)和后代还原(35.7至
摘要:活细胞具有高度复杂的微环境,而众多酶驱动的过程同时活跃。这些程序尚未在体外建立相当的控制,尽管尚未建立可比的对照,但这些程序是非常准确和高效的。在这里,我们设计了一个酶促反应网络(ERN),该酶反应网络(ERN)结合了拮抗和正交酶网络,以产生ATP燃料的瞬态共凝聚的可调节动力学。使用辣根过氧化物酶(HRP) - 介导的生物催化原子转移自由基聚合(BioATRP),我们合成了聚(二甲基氨基甲基丙烯酸酯)(PDMAEMA)(pDMAEMA),随后与ATP形成了Coacervates。我们使用正交和拮抗酶对合理探索了对凝聚和溶解的酶促控制,即碱性磷酸酶,碱性磷酸酶,肌酸磷酸激酶,己糖激酶,葡萄糖氧化酶和尿布。ATP燃料的凝聚力还证明了酶促催化,以证明其被用作细胞微反应器的潜力。此外,我们开发了生物催化聚合诱导的凝聚(传记),改善了反应产量并产生具有不同特征的凝聚力。此方法允许通过生物ATRP控制的聚合化而进行原位和实时编程。该策略通过弥合合成系统和生物系统之间的差距,为细胞隔室化提供了尖端的仿生应用和洞察力。暂时编程的一起坐诊的发展可能会导致多元素级联的空间布置,并提供有关用细胞器的人造细胞结构的新思想
c物理系,巴凡恩的Vivekananda科学,人文与商业学院,海得拉巴,Telangana,Telangana,500094,印度D,D d diveabhapatnam,Vishakhapatnam,Andhra Pradesh 530045,印度,印度纳米型纳米级液压型载体的使用,自1960年代以来,但是对于表面活性剂浓度,对结构和磁性的关注很少。本文研究了表面活性剂十二烷基硫酸钠(SDS)浓度对钴铁酸盐(COFE 2 O 4)纳米颗粒的影响,该纳米颗粒是在250°C和500°C的退火温度下通过反向胶束制备的。对SDS比率变化的样品(CO:SDS = 1:0.33,1:0.5,1:0.66)进行了XRD,TGA,TEM,FTIR和VSM研究。所有样品表现出单相尖晶石结构,晶体直径范围为10至18 nm。随着SDS浓度的增加,晶体的尺寸减小。TEM图像显示粒径在7.6 -17.7 nm的范围内。VSM调查显示样品的铁磁行为。相同浓度相对于退火温度相对于退火温度,观察到的增加反映了纳米颗粒的单域性质。这强调了退火条件在定制钴铁岩纳米颗粒中的关键作用,作为在纵向磁记录介质中的合适应用。(2024年3月26日收到; 2024年6月7日接受)关键词:钴与SDS比,粒径,反向胶束,十二烷基硫酸钠1.引言铁氧体磁性纳米颗粒一直是其广泛应用的最深入研究和研究的材料之一,包括铁氟烷基技术,磁性冷冻,磁共振成像(MRI),高密度记录,Spintronics,spintronics,抗肿瘤药物,抗肿瘤药物输送,磁性超热和其他[1-4]。钴铁氧体纳米颗粒由于其混合尖晶石结构而引起了很多兴趣,其中包含晶格中A和B位点的二价钴阳离子和三价铁阳离子[5]。钴铁氧体(COFE 2 O 4)具有显着的物理和机械性能,并且具有异常稳定和电绝缘性[6,7]。这些特殊特征使钴铁岩成为广泛医疗应用的可行竞争者[8]。合成铁氧体纳米颗粒的各种方法的目标是匹配其特征,例如粒度和分布,形状,团聚程度和粒子组成程度与特定应用。控制这些质量使您可以在各种应用中提高纳米颗粒的性能,包括磁数据存储,生物成像,催化和环境清理。sol-gel [9],共沉淀[10],微乳液[11]和其他流行的方法,它们具有其优点和局限性。
利用人工智能减轻青少年危险行为:范围界定审查方案 Hamidreza Sadeghsalehi a 和 Hassan Joulaei a,* a 伊朗设拉子医科大学健康研究所卫生政策研究中心 * 通讯作者(joulaei_h@yahoo.com) 青少年特别容易从事暴力、无保护性行为和药物滥用等危险行为,这些行为会对他们的健康和发展产生重大的负面影响。人工智能 (AI) 的最新进展为解决这些行为提供了创新的解决方案,但关于基于 AI 的干预措施的有效性和实施的证据仍然零散。本范围界定审查旨在系统地探索和绘制旨在减少青少年危险行为的基于 AI 的干预措施的文献。本综述将遵循 Arksey 和 O'Malley (2005) 概述并由 Levac、Colquhoun 和 O'Brien (2010) 改进的方法框架,符合 Joanna Briggs 研究所的指导方针。PRISMA 范围界定综述扩展 (PRISMA-ScR) 将指导报告。搜索策略将在 PubMed、Scopus、Web of Science 核心合集、CINAHL、PsycINFO、Cochrane 对照试验中心注册库、Embase、SID 和 Magiran 中执行,重点关注截至 2024 年 6 月以英语和波斯语发表的文章。两名独立审阅者将使用 Rayyan 筛选标题和摘要,然后对相关研究进行全文筛选。数据将使用标准化表格绘制图表,差异将通过讨论或咨询第三位审阅者解决。数据将以描述性方式综合并以表格、图形和图表的形式呈现。关键词:青少年、人工智能、危险行为、范围审查、干预措施
使用可持续材料引起了当今世界各地研究人员的关注。这是由于可持续材料的环保,可再生,可生物降解和无毒的行为,这些行为已用于各个部门,例如能源和功率,先进的材料开发,航空,药物输送,组织工程,组织,汽车,防御和腐蚀迁移。1 - 7在腐蚀迁移的地区,近年来,使用植物提取物等可持续材料(例如植物提取物)一直是研究与开发的重点。这是由于植物提取物的无毒行为与碳钢的有毒常规抑制剂相比。8种植物提取物,例如Terebinth的提取物,9个水瓜,10个荨麻叶,11番茄Pomace,12个Piper Guineense,13
psilocybin是一种天然发生的色氨酸生物碱前药,目前正在研究用于治疗一系列精神疾病。临床前报告表明,含psilocybin的蘑菇提取物或“全光谱”(迷幻)蘑菇提取物(PME)的生物学作用可能与化学合成的psilocybin(PSIL)的生物学作用可能不同。我们将PME与PSIL的影响对雄性C57BL/6J小鼠中的神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响,神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响。HTR测量在20分钟内显示出PSIL和PME的相似作用。脑标本(额叶皮层,海马,杏仁核,纹状体)使用蛋白质印迹分析突触蛋白,GAP43,PSD95,Synaptophysin和sv2a。这些蛋白质可以用作突触可塑性的指标。治疗三天后,突触蛋白的增加最少。11天后,额叶皮层中的PSIL和PME显着增加了GAP43(分别为p = 0.019; p = 0.039)和海马(P = 0.015; p = 0.027; p = 0.027)和突触possinpocyin and Synaptophysin在海马中(p = 0.041; p = 0.041; p = 0.05)和am amy; p = 0.03(p = 0.03)(p = 0.03);psil在杏仁核中增加了SV2A(p = 0.036),并且PME在海马中这样做(p = 0.014)。在纹状体中,仅PME增加突触素(P = 0.023)。分别分析这些大脑区域对PSD95的PSIL或PME对PSD95没有显着影响。与氧化应激和能量产生途径相关的嘌呤鸟嘌呤,甲黄嘌呤和肌苷显示出从车辆到PSIL再到PME的逐渐下降。的嵌套方差分析(ANOVA)显示,在所有大脑区域中,四种蛋白质中的每一种都显着增加,以进行PME和媒介物控制,而仅在海马和杏仁核中观察到显着的PSIL效应,并且仅在Hippocampus和Amygdala中观察到,并且仅限于PSD95和SV2A。利用毛细管电泳的非靶向极性代谢组学 - 傅立叶变换质谱法(CE-FEFTM)进行了前额叶皮层的代谢组学分析,并在PME和媒介物组之间显示出差异代谢分离。总而言之,我们的突触蛋白发现表明,PME对突触可塑性具有比PSIL更有效,更长时间的作用。我们的代谢组学数据支持从惰性车辆通过化学psilocybin到PME的梯度进一步支持差异效应。需要进一步的研究来确认和扩展这些发现,并确定与单独使用psilocybin相比,可能导致PME效应增强的分子。
不同的氟、羟基和甲氧基取代的苯甲醛残基(图 1)对分离的螺旋体肌肉幼虫表现出显着的体外驱虫活性,以及对 MCF-7 和 AR-230 乳腺癌细胞的强效抗增殖活性(Anichina 等人 2021;Argirova 等人 2021、2023)。这些化合物还能够抑制微管蛋白聚合(Argirova 等人 2021)。含有羟基苯基和甲氧基苯基部分的 1H-苯并咪唑-2-基腙在卵磷脂和脱氧核糖模型系统中表现出强大的抗氧化和自由基清除特性以及铁诱导的氧化损伤。密度泛函理论计算表明,1H-苯并咪唑-2-基腙具有非常通用的自由基清除特性,这是因为存在多个反应位点,这些反应位点的特点是反应焓相对较低,并且可以通过不同的反应途径同时起作用:非极性介质中的氢原子转移、极性介质中的连续质子损失电子转移以及极性和非极性介质中的自由基加合物形成 (Argirova 等人,2021 年)。我们选择在这里检查化合物 2H4MB-BH 施加后 HSA 的荧光曲线,并利用这些曲线表征 2H4MBBH-HSA 相互作用参数。所采取的方法是表明荧光参数有显著的变化,这将有助于评估合成的抗癌镇静剂 2-(2-羟基-4-甲氧基苄亚甲基)-1-(1H-苯并咪唑-2-基)肼的恢复效果。
通过化学和绿色方法S. N. Begum *,R。Kumuthini物理系,Sadakathullah Appa学院,Tirunelveli-627011,印度,近年来,开发有效的绿色化学方法来合成金属氧化物纳米颗粒的合成,成为研究人员的主要重点。他们已经进行了研究,以找到一种用于生产金属氧化物纳米颗粒的生态友好技术。在这项工作中,我们的目标是通过化学和绿色方法合成氧化锌纳米颗粒。通过混合硫酸锌(ZnSO 4)溶植物提取物和KOH合成氧化锌纳米颗粒。通过XRD,FT-IR和UV-VIS光谱和光致发光研究表征合成的氧化锌纳米颗粒。此外,通过艺术碟片扩散法测试了合成的氧化锌纳米颗粒的抗菌活性。(2023年6月8日收到; 2023年9月5日接受)关键字:绿色合成,Zno Nano粒子,XRD,FTIR,UV,PL