全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于新一代人工智能发展的决策部署,坚持市场驱动与政府引导相结合,按照“统筹规划、分类施策、市场主导、急用先行、跨界融合、协同推进、自主创新、开放协作”的原则,立足国内需求,放眼国际,建立新一代人工智能国家标准体系,加强标准顶层设计和宏观指导。加快创新技术与应用转化为标准,加强标准实施和监督,推动创新成果与产业深度融合。注重对智能制造、工业互联网、机器人、车联网等相关标准体系的统筹和支撑。深化人工智能标准国际交流合作,注重国际国内标准协同,充分发挥标准对人工智能发展的支撑引领作用,保障高质量发展。
相关禁令与消费者保护法密切相关,例如不公平商业行为指令、数字服务法(DSA)和金融法规。这些行为还影响个人数据的合法处理,其中包括《通用数据保护条例》(GDPR)等。据 AP 称,人工智能法中的禁令具有预防性质(不得开发或使用人工智能系统),因此这些禁令是对上述法律的补充。因此,这些禁令为更有效地监督人工智能系统在欺骗、操纵和剥削人身案件中发挥作用的情况提供了机会。重要的是,这些法规的解释和应用尽可能一致。这需要荷兰消费者和市场管理局(ACM)、荷兰金融市场管理局(AFM)和 AP 之间的密切合作与协调。
在日益占主导地位的知识经济中,计算卓越性是竞争力的一大驱动力。在过去十年中,计算人工智能 (AI) 在经济发展和市场竞争力中的作用已从小到大。其经济重要性怎么强调都不为过——在源自加拿大的神经网络模型训练创新的推动下,巨大的变化颠覆了许多领域的市场部门领导地位,包括信息搜索、语音识别、自然语言理解、导航助手、自动驾驶汽车、诉讼准备、制造资格等。对于加拿大经济来说,人工智能在高级研究计算 (ARC) 提供的学术计算创新与工业竞争力的良性循环中发挥重要作用至关重要。
Farmer.CHAT 的成功商业用例已引起公共部门合作伙伴的大量需求。Digital Green 已筹集 3000 万美元,用于支持印度、肯尼亚和埃塞俄比亚农业部开发和推出类似的人工智能农学聊天机器人,目标是覆盖超过 2.2 亿人
摘要。我们分析了共同参与人工智能 (AI) 的企业和机构的部门和国家系统。除了将 AI 作为通用技术或其特定应用领域的分析之外,我们还借鉴了部门系统的进化分析,并询问“谁在做什么?”在 AI 中。我们提供连接 AI 开发者、制造商和用户的复杂相互依赖模式的细粒度视图。我们区分了 AI 支持、AI 生产和 AI 消费,并分析了企业和社区之间新兴的共同专业化模式。我们发现,人工智能的供应以少数几家大型科技公司为主导,这些公司对人工智能的下游应用(例如搜索、支付、社交媒体)支撑了人工智能最近的大部分进展,同时也提供了必要的上游计算能力(云和边缘)。这些公司在人工智能研究领域主导着顶尖学术机构,进一步巩固了它们的地位。我们发现,只有少数能够数字化和获取高质量数据的公司采用了人工智能,并从中受益。我们考虑了人工智能行业在三个主要地区(中国、美国和欧盟)的不同发展情况,并注意到少数公司正在构建全球人工智能生态系统。我们的贡献是以人工智能为例展示进化思维的演变:我们展示了从国家/部门系统到三螺旋/创新生态系统和数字平台的转变。我们得出了如此广泛的进化理论对理论和实践的影响。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
确认性评估:确认性评估旨在提供有关绩效差异的确凿证据。与科学实验一样,它们必须提出明确的假设以供检验,并且必须精心设计,以尽量减少得出错误结论的风险。在评估和报告少数群体的系统绩效时,在只有少数额外因素可能影响系统绩效的情况下,确认性评估是最可行的。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术