神经同步是指神经元群与外部节律刺激(例如经颅交流电刺激 (tACS))的相位同步。tACS 会对人类行为产生深远影响。然而,仍有大量研究发现,tACS 应用于人类受试者时不会产生行为影响。为了研究这种差异,我们对来自大鼠运动皮层的单个单元数据应用了基于时间敏感锁相值 (PLV) 的分析。分析表明,神经同步的检测主要取决于脉冲信息积累的时期长度。增加时期长度可以检测到逐渐减弱的神经同步水平。基于这种单个单元分析,我们假设 tACS 对人类行为的影响在使用更长时期长度的行为范式中更容易检测到。我们通过使用 tACS 来同步患者和健康志愿者的震颤来测试这一点。当使用短时间周期分析行为数据时,无法检测到震颤同步效应。然而,随着周期长度逐渐增加,可以检测到微弱的震颤同步。这些结果表明,依赖于长周期长度信息积累的 tACS 行为范式往往会成功检测到行为效应。然而,依赖于短周期长度的 tACS 范式不太可能检测到效应。
1 安徽农业大学人文社会科学学院心理学系,合肥,中国;2 安徽警官职业学院信息管理系,合肥,中国;3 中国科学技术大学人文社会科学学院心理学系,安徽,合肥,中国;4 合肥国家微尺度物质科学研究中心、中国科学技术大学生命科学与医学部、中国科学技术大学第一附属医院放射科,合肥,中国;5 中国科学技术大学先进技术研究院脑疾病物理治疗应用技术中心,合肥,中国;6 上海外国语大学国际商学院脑机智能信息行为教育部和上海市重点实验室,上海,中国
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛模式,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛范例,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验性疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
目的:本研究旨在评估在早期阿尔茨海默病 (AD) 中,通过对楔前叶施加伽马频率的经颅交流电刺激 (γ-tACS) 是否能改善情景记忆并通过调节脑节律来调节胆碱能传递。方法:在这项随机、双盲、假对照、交叉研究中,60 名 AD 患者接受了临床和神经生理学评估,包括在使用针对楔前叶的 γ-tACS 或假 tACS 治疗前后 60 分钟的情景记忆和胆碱能传递评估。在 10 名患者的子集中,进行了 EEG 分析和电场分布的个体化建模。评估了 γ-tACS 疗效的预测因素。结果:我们观察到,在 γ-tACS 后,Rey 听觉言语学习 (RAVL) 测试的即时回忆 (p < 0.001) 和延迟回忆分数 (p < 0.001) 有显著提高,而在假性 tACS 后没有。在 γ-tACS 后,面孔-姓名联想分数有所提高 (p < 0.001),但在假性 tACS 后没有。短潜伏期传入抑制(胆碱能传递的间接测量)仅在 γ-tACS 后增加 (p < 0.001)。ApoE 基因型和基线认知障碍是 γ-tACS 反应的最佳预测因素。临床改善与后部区域伽马频率的增加以及楔前叶中预测的电场分布量相关。
中风是全世界常见的神经系统疾病,可引起严重的残疾。经颅交流电流刺激(TACS)是一种新兴的非侵入性神经调节技术,可调节脑振荡并重塑脑节律。这项研究旨在研究TAC对中风患者功能恢复的影响。Medline(PubMed),Cochrane图书馆,Embase,Scopus和Web of Science Databases搜索了有关TAC和中风的英语文章,直到2023年10月20日出版。合并了以下关键搜索短语,以识别潜在相关的文章:“ TACS”,“经颅交替刺激”,“中风”,“大脑梗塞”和“脑内出血”。研究选择的纳入标准如下:(1)涉及中风患者和(2)使用TAC进行功能恢复的研究。总共确定了34项潜在的研究。阅读了标题和摘要并根据全文文章评估其资格后,包括五篇文章。在纳入的研究中,一项研究了TAC后中风患者的总体功能状况的改善,两人研究了TAC对运动功能和步态模式的影响。此外,一项研究报告了TACS对失语症恢复的疗效,一项研究评估了TACS对半专利疏忽的影响。我们的发现表明,TACS改善了中风患者的功能恢复。高质量的基于证据的研究应支持TAC的潜在临床应用。TAC的应用与改善了整体功能恢复,感觉运动障碍,失语和半部专为忽视有关。
经颅交流电刺激 (tACS) 是一种常用的非侵入性脑活动调节方法。具体来说,tACS 经常被用作一种有针对性的干预手段,通过增强特定频率的神经振荡来影响特定行为。然而,这些干预手段往往产生高度可变的结果。在这里,我们为这种可变性提供了一个可能的解释:tACS 与大脑的持续振荡相竞争。利用来自警觉的非人类灵长类动物的神经记录,我们发现,当神经放电独立于持续的脑振荡时,tACS 很容易同步脉冲活动,但当神经元强烈同步于持续的振荡时,tACS 通常会导致同步减少。因此,即使刺激方案是固定的,tACS 也可以对神经活动产生截然不同的结果。数学分析表明,这种竞争很可能在许多实验条件下发生。因此,试图将外部节奏强加于大脑往往会产生完全相反的效果。
开发有效的工具和策略来缓解慢性疼痛是一项高度优先的科学和临床目标。特别是,与疼痛处理相关的大脑区域已被研究作为通过非侵入性脑刺激 (NIBS) 缓解疼痛的潜在目标。除了阐明疼痛与脑震荡活动之间的关系外,经颅交流电刺激 (tACS) 作为一种控制疼痛的可能技术,引起了科学界的关注,它能够非侵入性地调节脑震荡活动并调节脑震荡通信。本综述重点介绍通过操纵脑震荡活动使用 tACS 缓解疼痛及其潜在的临床应用。几项研究报告称,单个大脑上的 tACS 通过使慢性疼痛患者的异常脑震荡活动正常化来减轻疼痛。基于脑间同步来操纵脑间通信的人际 tACS 方法可能通过亲社会效应缓解疼痛。疼痛由时空神经通信编码,代表疼痛的认知、情绪情感和感觉运动方面的整合。因此,未来的研究应寻求将慢性疼痛中的病理性脑震荡通信确定为 tACS 的治疗目标。总之,tACS 可以有效地重建脑震荡活动并协助社交互动,并且可能有助于开发新的疼痛控制方法。
对每个 TMS-EEG 记录位点进行包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的方差分析。皮质振荡分析按以下步骤进行。我们首先评估基线(T0)的伽马振荡的频率和功率。为了测试 iTBS + tACS 方案是否可能导致伽马波段在振荡功率方面发生任何变化,我们使用了包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的重复测量方差分析。然后我们专注于单个频率变化分析;我们计算了单个频率峰值(整个振荡频谱中表达最多的频率),并且与伽马波段功率分析相同,我们使用了重复测量方差分析,其中受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)来评估波段表达的变化。对于
经颅交流电流刺激(TAC)通常用于增强脑节律,以期改善行为性能。不幸的是,这些干预措施通常会产生高度可变的结果。在这里,我们通过在警报非人类灵长类动物中记录单个神经元来确定这种变异性的关键来源。我们发现,TACS似乎与大脑的内源性振荡竞争以控制尖峰时序,而不是增强节奏活动。具体而言,当刺激的强度相对于内源性振荡较弱时,TACS实际上会降低尖峰的节奏性。但是,当刺激相对较强时,TACS对尖峰活动施加了自身的节奏。因此,TAC的作用明确地取决于神经夹带的强度,内源性振荡在行为状态和大脑区域之间差异很大。未经仔细考虑这些因素,试图将外部节奏施加到特定的大脑区域,通常可能与预期效应相反。