摘要:时间干扰刺激(TIS)旨在通过在深度产生干扰领域来靶向横向电流交替刺激(TAC)期间的深脑区域。尽管在动物和人类模型和刺激研究中已经证明了其调节作用,但缺乏直接的实验证据,因为它在人类中的效用(体内)。在此处,我们直接测试和比较了三种不同的结构:首先,我们执行周围神经和肌肉刺激,将肌肉抽搐定量为读数,其次,我们以磷光感知为替代标记物,将轨道性刺激为替代标记物,第三,我们尝试将Alpha振动的平均功能定为量级的启动力,以量身像为单位。我们发现了在PNS中调制频率上刺激效率的有力证据,但是我们没有发现其在中枢神经系统中效用的证据。可能无法激活中枢神经系统目标的可能原因可能是此处相对较高的激活阈值,也可能是抑制性刺激成分对载体频率干扰调制信号的影响。
隔室建模是定量动态PET数据的标准方法:它提供了目标组织中radiotracer动力学的数学描述,这是随着时间时间等离子体中示踪剂浓度的函数。等离子体示踪活动通常定义模型的输入函数,而模型参数描述了示踪剂动力学(Bertoldo等,2014)。在TSPO PET示踪剂的情况下,使用最广泛的动力学模型由两个可逆隔室组成,由4速率常数(即K 1,K 2,K 3,K 4; Turkheimer等,2015; Wimberley等人,Wimberley等,2021; 2021; 2021;图1A),CAILS canizz consectize等人(aizz)。如果已知输入,则可以通过将模型拟合到测量的时间活动曲线(TAC)来估计模型参数。然后将模型参数组合在一起以量化感兴趣的指标,例如分布量(V t,; Innis等,2007),在TSPO PET研究中广泛使用了TSPO密度的代理(Rizzo等人,2014年; Marques等,2014; Marques等,20211)。
缩写列表:AG,角回;CES,经颅电刺激;CI,置信区间;COBIDAS,数据分析和共享最佳实践委员会;CoG,重心;DLPFC,背外侧前额皮质;EEG,脑电图;FEF,额叶眼区;FFT,快速傅里叶变换;IAF,个体阿尔法频率;ICA,独立成分分析;IPS,顶内沟;ITPC,经颅间相位相干性;LTD,长期抑郁;LTP,长期增强;mA,毫安;MD,平均差异;MEEG,脑磁图和脑电图;MEG,脑磁图;MRI,磁共振成像;MT,运动阈值;NIBS,非侵入性脑刺激;OSF,开放科学框架;otDCS,振荡经颅直流电刺激; PAF,峰值 alpha 频率;PICO,参与者,干预,控制,结果;PRISMA,系统评价和荟萃分析的首选报告项目;PROSPERO,国际系统评价前瞻性注册库;RINCE,减阻非侵入性皮层电刺激;rTMS,重复经颅磁刺激;SE,标准误差;SM,感觉运动;STDP,尖峰时间依赖性可塑性;SWiM,无需荟萃分析的综合;tACS,经颅交流刺激;TBS,Theta 爆发刺激;tDCS,经颅直流刺激;tES,经颅电刺激;TMS,经颅磁刺激;tRNS,经颅随机噪声刺激。
摘要。自我主张身份(SSI)系统使用户在访问数字和真实世界资源时(很大程度上)建立并验证其身份,以作为以用户为中心的身份管理的有希望的隐私保护SO。Maram等人的最新工作。提出了保护隐私的SYBIL分散的SSI Sys-Tem candid(IEEE S&P 2021)。虽然这是一个重要的步骤,但显着的缺点破坏了其功效。其中最重要的两个是以下内容:首先在一个恶意发行人的情况下,无法实现的无链性破坏。第二,它引入了交互性,因为用户必须每次与发行人进行通信,以收集旨在用于与应用程序交互的情况。这是SSI的目标,其目的是使用户完全控制其身份。本文首先介绍了基于公开可验证的属性阈值匿名计数令牌(TACT)的概念。与局限于集中设置的最新方法(Benhamouda等,Asiacrypt 2023)不同,TACT在分布式信任环境中运行。伴随着正式的安全模型和可证明的安全插入,Tact引入了代币发行的新颖维度,我们认为这具有独立的利益。接下来,该纸张利用拟议的TACS方案来构建有效的SYBIL SSI系统。该系统支持各种功能,包括阈值发行,不可链接的多个人选择性披露以及提供恒定尺寸凭证的非交互性,不可转移的凭证。规定的结构得到了严格的安全定义和证明的支持。最后,我们的基准结果表明,与坦率的所有发行人相比,我们的建筑物的效率提高了效率,并降低了可以与所有发行人并行运行的一轮亲公司。
创造优质就业岗位,抓住未来经济机遇,促进建设一支有韧性、灵活的劳动力队伍和良好的职场。 3 FEC 的成员背景多样,包括政府、企业、TAC、工会、高等教育机构 (IHL) 和培训机构。新一届 FEC 共任命了 40 名成员。FEC 主席对 FEC 成员表示欢迎,他们凭借在不同领域的丰富经验和专业知识,以及在各自领域的强大管理能力而获任命。FEC 主席还感谢即将离任的 FEC 成员在过去任期内为新加坡经济转型所做的贡献。FEC 成员名单请参阅附件 A,部分成员的引言请参阅附件 B。 4 FEC 牵头推出了 23 个行业转型地图 (ITM)。这些转型努力取得了良好成效。新加坡的整体劳动生产率从 2016 年到 2019 年每年增长 2.7%,而前三年的年增长率为 2.2%。这创造了高质量的就业机会和更高的工资,全职新加坡人的实际中位数收入在同一时期每年增长 3.7%,而前一时期为 3.2%。5 这一进展被新冠肺炎疫情打乱。这场疫情还加速了长期结构性趋势,例如全球秩序的变化、供应链的重构、数字和技术转型、消费者偏好的变化以及对可持续性的日益关注。为了应对系统性变化并抓住新冠肺炎带来的新机遇,联邦选举委员会将在过去五年取得的进展的基础上,通过 ITM 2025 为未来五年规划新的前进方向。
决定和命令 批准规定 BPU 卷宗号 ER23090634 和 GR23090635 记录当事人:Aaron I. Karp 律师,公共服务电力和天然气公司 Brian O. Lipman 律师,新泽西州费率顾问部主任 董事会决定:2023 年 9 月 1 日,公共服务电力和天然气公司(“PSE&G”或“公司”)向新泽西州公用事业委员会(“委员会”)提交了一份请愿书,寻求批准与电力税调整抵免(“ETAC”)和天然气税调整抵免(“GTAC”)(统称“TAC”)相关的费率变动,以确定 2024 年的修订费率(“2023 年 9 月 TAC 请愿书”)。通过本决定和命令,董事会考虑由 PSE&G、新泽西税率顾问部(“税率顾问”)和董事会工作人员(“工作人员”)(统称“各方”)执行的和解协议(“协议”),旨在解决公司在 2023 年 9 月 TAC 请愿书中提出的请求。背景 2017 年 12 月 22 日,《减税与就业法案》(PL 115 c. 97)(“2017 年法案”)签署成为法律,生效日期为 2018 年 1 月 1 日。2017 年法案规定了对联邦国内税收法典的修改,包括将最高企业税率从 35% 降至 21%。董事会审查了 2017 年法案,并于 2018 年 1 月 31 日发布命令,认定 2017 年法案通过多征收未缴纳的联邦所得税,为新泽西州公用事业公司节省了开支。 1 因此,审议令指示包括 PSE&G 在内的几家新泽西州公用事业公司进行申报,以确保《2017 年法案》带来的任何税收节省都能够提供给纳税人。
耳石复位疗法 ................................................................................................................ 86 定量脑电图 (QEEG) ...................................................................................................... 88 神经反馈 .............................................................................................................................. 91 音频脑波训练 (ABWE) ...................................................................................................... 94 视觉治疗 ...................................................................................................................... 97 超声波治疗 ...................................................................................................................... 99 虚拟现实神经修复 ...................................................................................................... 101 脑机接口认知刺激 (BCI-CS) ...................................................................................... 104 脑动态思维调节 / 催眠治疗 ............................................................................................. 107 脑电波治疗 ............................................................................................................. 110 神经肌肉贴 (NMT) ............................................................................................................. 115 腕关节神经肌肉贴 (NMT) ............................................................................................. 118 腕关节神经肌肉贴 (NMT)隧道综合症 ................................................................ 122 神经肌肉贴扎 (NMT) 垫坐骨神经痛 .................................................................. 126 神经肌肉贴扎 (NMT) 垫 足底筋膜炎 .................................................................. 129 神经肌肉贴扎 (NMT) 垫 膝关节病 .................................................................. 132 经颅直流电刺激 (tDCS)/经颅交流电刺激(tACS) / 经颅随机噪声刺激 (tRNS) ................................................... 135 重复经颅磁刺激 (rTMS) ................................................................................... 138 干针治疗 .................................................................................................................... 141 干细胞 / Sel Punca ........................................................................................................ 143 Terapi Restoratif Botoks terhadap Spastisitas .................................................................................. 146 Injeksi Toksin 肉毒杆菌 Untuk Distonia Fokal ................................................................................ 148 Bedah Stimulasi Otak Dalam(深部脑刺激).................................................................. 153 Kecepatan Hantar Saraf (KHS) .................................................................................. 157 Pemeriksaan F 波 .......................................................................................................... 172 肌电图 (EMG) ............................................................................................................. 175 瞬目反射 ( 眨眼反射 ) ................................................................................................ 178 重复神经刺激 (RNS) ............................................................................................................. 180 单纤维肌电图 ............................................................................................................................. 182 皮肤交感神经反应 (SSR) ............................................................................................................. 183 心率变异性 (RR 间隔 ) ............................................................................................................. 186 体感诱发电位 (SSEP) ............................................................................................................. 189 运动诱发电位 (MEP) ............................................................................................................. 191 视觉诱发电位 (VEP) ............................................................................................................. 195 脑干听觉诱发电位 (BAEP) ............................................................................................................. 197 P300 ............................................................................................................................. 199术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) .............................................................................................................. 213 多次睡眠潜伏期测试 (MSLT) .............................................................................................. 216................................ 197 P300 ................................................................................................................................ 199 术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) ................................................................................................................ 213 多次睡眠潜伏期测试 (MSLT) ................................................................................................ 216................................ 197 P300 ................................................................................................................................ 199 术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) ................................................................................................................ 213 多次睡眠潜伏期测试 (MSLT) ................................................................................................ 216
毫米级无电池硬膜外皮质刺激器 Joshua E. Woods 1,& , Amanda L. Singer 1,2,& , Fatima Alrashdan 1 , Wendy Tan 1 , Chunfeng Tan 3 , Sunil A. Sheth 3 , Sameer A. Sheth 4 , Jacob T. Robinson 1,2,5,6,7 * 1 莱斯大学电气与计算机工程系,6100 Main St, Houston, TX, 77005 2 Motif Neurotech,702 Marshall St, Houston, TX, 77006 3 UTHealth McGovern 医学院神经内科,6431 Fannin St, Houston, TX, 77030 4 贝勒医学院神经外科系,1 Baylor Plaza, Houston, TX, 77030 5 莱斯大学生物工程系, 6100 Main St,休斯顿,德克萨斯州,77005 6 莱斯大学应用物理学项目,6100 Main St,休斯顿,德克萨斯州,77005 7 贝勒医学院神经科学系,1 Baylor Plaza,休斯顿,德克萨斯州,77030 & 这些作者贡献相同 * 通讯作者,jtrobinson@rice.edu 摘要 难治性神经和精神疾病越来越多地使用植入式神经调节装置进行脑刺激疗法治疗。然而,目前市售的刺激系统受到对植入式脉冲发生器和有线电源的需求的限制;这种架构的复杂性会产生多个故障点,包括导线断裂、移位和感染。实现微创方法可以增加获得这些疗法的机会。在这里,我们展示了第一个毫米大小的无导线脑刺激器,用于大型动物和人类受试者。这种数字化可编程的超脑治疗装置 (DOT) 宽度约为 1 厘米,但可以通过硬脑膜产生足够的能量来按需刺激皮质活动。这种极端的小型化是使用最近开发的磁电无线电力传输实现的,它使我们能够达到刺激大脑表面所需的功率水平,而无需直接接触皮质表面。这种外部供电的皮质刺激 (XCS) 开启了简单的微创外科手术的可能性,可以通过永不接触大脑表面的微型植入物实现精确、持久和在家的神经调节。当药物无效、效果不佳或产生无法忍受的副作用时,患者和临床医生越来越多地转向神经调节来寻求有效的治疗方法。对于帕金森病 (PD) 和特发性震颤 (ET),深部脑刺激是治疗震颤 1 和其他症状 2 的标准治疗方法。对于重度抑郁症 (MDD) 和强迫症 (OCD) 等精神健康问题,越来越多的共识认为,当药物无法提供充分治疗时,通过神经生理学调节特定大脑区域的活动可以提供一种有效的治疗方法 3 。经颅磁刺激 (TMS) 就是应用这种刺激的一种方法。TMS 可以使用 1-2 特斯拉的外部磁场 4 ,非侵入性地激活大脑表面几毫米到几厘米大小的小区域,并且已经在大量临床研究中成功用于治疗神经精神疾病。自 1998 年以来,使用 TMS 治疗神经精神疾病的临床试验数量呈指数级增长,翻倍时间约为 2.5 年 5 。根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司都会报销多次临床治疗的费用 6 。还有有希望的数据表明,TMS 可用于治疗强迫症 7 、创伤后应激障碍 8 和阿尔茨海默病 9 。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅获准在诊所使用。因此,对于住得离 TMS 设施较远或无法从工作或其他生活中抽出时间接受日常 TMS 治疗的患者,无法使用 TMS。其次,每次治疗定位可能不精确,因为每次患者在诊所时都必须对准刺激器。虽然还有其他非侵入性脑刺激形式,如经颅直流刺激 (tDCS) 和经颅交流刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的接受度。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线会因频繁移动而发生导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于
迁移到 3G 技术标准:选定国家之间的比较 作者:Richard Nunno,FCC 国际局 2003 年 9 月 十多年来,国际电信联盟 (ITU) 一直支持国际上开发先进的第三代 (3G) 移动电信服务的努力,该服务比以前和现有的移动服务具有更高的带宽,并且用户可以跨国界无缝使用(称为全球漫游)。为此,ITU 确定了频谱并为国际移动电信 2000 (IMT-2000)(3G 服务的正式名称)制定了技术标准。ITU 1992 年的世界无线电通信行政大会 (WARC) 和 2000 年的世界无线电通信大会 (WRC) 确定了几个可用于 3G 服务的频谱带。移动电信行业已开始提供 3G 服务,可提供语音、数据和视频等宽带应用。根据国际电信联盟 (ITU) 的定义,室内 (低移动性) 无线应用的 3G 信号传输速率必须达到 2 兆比特每秒 (Mbps) 或更高 (比当今 56 千比特每秒 (kbps) 拨号 PC 调制解调器快 35 倍以上)。对于行人交通,3G 速率可能较低 (384 kbps),对于高移动性 (车辆) 交通,3G 速率可能为 144 kbps。1 每个国家/地区如何实施 3G 系统取决于许多因素,例如该国的 3G 频谱分配、
招聘信息 博士后研究员 – 儿童脑电图和言语 我们正在寻找一名博士后研究员,参与由加拿大卫生研究院 (CIHR) 资助的一个多年期项目,该项目研究儿童言语处理的脑电图标记及其与阅读和语言障碍(如诵读困难和 DLD)的关系。候选人将加入一个多元化的研究团队,该团队由认知神经科学、计算神经科学以及通信科学和障碍领域的研究者组成,由 Marc Joanisse 博士、Laura Batterink 博士、Blake Butler 博士和 Janis Oram 博士领导。我们的研究项目包括收集和分析 3 至 8 岁儿童的自然言语脑电图,以及认知和语言发展的指标,重点关注多元时间响应函数 (mTRF) 和将听觉数据与脑电图关联起来的相关模型。候选人还将分析大脑和行为指标之间的关系,以更好地了解言语脑电图指标与典型和受损的阅读和语言发展之间的关系。除了为项目做出贡献外,候选人还将有机会研究认知和计算神经科学以及通信科学和障碍领域的其他研究问题。西部大学拥有最先进的发育认知神经科学设施,包括 MRI/fMRI、多个 EEG 系统、睡眠实验室、fNIRS 和 TMS/TDCS/TACS。最先进的 OPM-MEG 设施也计划于 2025-2026 年投入使用。作为他们在项目中的角色的一部分,候选人将协助项目管理、跨实验室协作、与社区和合作伙伴组织联络、监督和指导研究生和本科生、指导和/或进行分析、将结果撰写为演示文稿和期刊文章,以及在学术界之外传播知识。该职位的薪水为每年 65,000 美元,外加福利。有关西部大学博士后研究员福利的信息,请访问:https://www.uwo.ca/hr/benefits/your_benefits/pda/index.html。成功候选人将向心理学系的 Marc Joanisse 博士汇报。申请审核将于 2024 年 10 月 15 日开始,并将持续到职位被填补为止。该任命最早可于 2024 年 11 月 1 日开始,初始任命为一年,可续签,最长可达 3 年。申请人必须拥有认知神经科学、心理学、言语语言病理学或相关领域的博士学位。理想的申请人应具有以下一项或多项经验:语言和/或认知的发展认知神经科学;EEG 和/或相关神经成像方法;与将机器学习应用于 EEG 或类似数据集相关的计算技能。理想的申请人还应具有出色的英语书面和口头交流能力、新兴的出版记录以及出色的个人时间管理能力,项目管理和组织能力。申请人应提交简历、研究兴趣简介、代表性预印本或出版物以及我们可能联系的两位推荐人的姓名和联系方式(电子邮件和电话)。我们的团队非常重视多样性,并强烈鼓励来自各个领域的候选人