量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
摘要。最近的研究表明,量子周期查找可用于破解叠加查询模型中的许多流行构造(一些分组密码,如 Even-Mansour、多个 MAC 和 AE……)。到目前为止,所有被破解的构造都表现出强大的代数结构,这使得能够构造单个输入块的周期函数。恢复秘密周期可以恢复密钥,区分并破坏这些模式的机密性或真实性。在本文中,我们介绍了量子线性化攻击,这是一种使用 Simon 算法针对叠加查询模型中的 MAC 的新方法。具体来说,我们使用多个块的输入作为隐藏线性结构的函数的接口。恢复此结构可以执行伪造。我们还介绍了这种攻击的一些变体,这些变体使用其他量子算法,这些算法在量子对称密码分析中不太常见:Deutsch、Bernstein-Vazirani 和 Shor 的算法。据我们所知,这是这些算法首次用于量子伪造或密钥恢复攻击。我们的攻击破解了许多可并行化的 MAC,例如 LightMac、PMAC 以及具有(经典)超龄安全性(LightMAC+、PMAC+)或使用可调整分组密码(ZMAC)的众多变体。更一般地说,这表明构建可并行化的量子安全 PRF 可能是一项具有挑战性的任务。
不可察觉的对抗性攻击旨在通过添加与输入数据的不可察觉的概念来欺骗DNN。以前的方法通常通过将共同的攻击范式与专门设计的基于感知的损失或生成模型的功能相结合,从而提高了攻击的易用性。在本文中,我们提出了扩散(Advad)中的对抗攻击,这是一种与现有攻击范式不同的新型建模框架。通过理论上探索基本的建模方法,而不是使用需要神经网络的reg-ular扩散模型的转化或发电能力,从而将攻击作为非参数扩散过程概念化。在每个步骤中,仅使用攻击模型而没有任何其他网络来制定许多微妙而有效的对抗指导,从而逐渐将扩散过程的结束从原始图像终结到了所需的不可感知的对抗性示例。以拟议的非参数扩散过程的扎实理论基础为基础,达到了高攻击功效,并且在本质上降低了整体扰动强度,并实现了高发作的效果。此外,还提出了增强版本的Advad-X,以评估我们在理想情况下的新型框架的极端。广泛的实验证明了拟议的Advad和Advad-X的有效性。与最新的不可察觉的攻击相比,Advad平均达到99.9%(+17.3%)的ASR,为1.34(-0.97)L 2距离,49.74(+4.76)PSNR和0.9971(+4.76)和0.9971(+0.0043)(+0.0043)ssim,抗四个DIFERTIBER架构的DNN均具有三个流行的DNN。代码可在https://github.com/xianguikang/advad上找到。
在日益数字化和互联互通的欧洲,欧盟从各个方面努力提升网络弹性,保护其公民和企业免受网络威胁。该行动计划应对了形势的紧迫性和该行业面临的独特威胁。它以现有的网络安全立法框架为基础。根据 NIS2 指令,医院和其他医疗保健提供者被确立为高关键性行业。NIS2 网络安全框架与《网络弹性法案》相辅相成,《网络弹性法案》是欧盟第一部对包含数字元素的产品提出强制性网络安全要求的立法,于 2024 年 12 月 10 日生效。委员会还根据《网络团结法》建立了网络应急机制,该机制加强了欧盟的团结和协调行动,以发现、准备并有效应对日益增长的网络安全威胁和事件。
大型语言模型(LLMS)弥合了人类语言理解与复杂问题解决问题之间的差距,在几个NLP任务上实现了最先进的性能,尤其是在几次射击和零照片的设置中。尽管LLMS具有明显的功效,但由于对计算资源的限制,用户必须使用开源语言模型或将整个培训过程外包给第三方平台。但是,研究表明,语言模型容易受到潜在的安全漏洞的影响,尤其是在后门攻击中。后门攻击旨在通过中毒训练样本或模型权重,将目标漏洞引入语言模型中,从而使攻击者能够通过恶意触发器来操纵模型响应。尽管对后门攻击的现有调查提供了全面的概述,但他们缺乏对专门针对LLM的后门攻击的深入检查。为了弥合这一差距并掌握该领域的最新趋势,本文通过专注于微调方法,介绍了对LLM的后门攻击的新观点。具体来说,我们将后门攻击系统地分类为三类:全参数微调,参数效率微调和没有微调1。基于大量审查的见解,我们还讨论了未来关于后门攻击的研究的关键问题,例如进一步探索不需要微调或开发更多秘密攻击算法的攻击算法。
摘要 - 随着云服务,智能设备和IoT设备的使用指数级增长,高级网络攻击变得越来越复杂且无处不在。此外,计算体系结构和内存技术的快速演变已经迫切需要理解和适应硬件安全性漏洞。在本文中,我们回顾了当代计算系统中漏洞和缓解策略的当前状态。我们讨论缓存侧通道攻击(包括幽灵和崩溃),功率侧渠道攻击(例如简单功率分析,差异功率肛门,相关功率分析和模板攻击)以及电压毛病和电磁分析等先进技术,以帮助了解和建立强大的网络环境辩护系统和建立强大的网络抗性辩护系统。我们还研究记忆加密,重点是指示性,粒度,密钥管理,掩盖和重新接键策略。此外,我们涵盖了加密指导集架构,安全启动,信任机制的根,物理无统治功能和硬件故障注入技术。本文以对RISC-V架构独特的安全挑战的分析结束。本文提供的综合分析对于建立有弹性的硬件安全解决方案至关重要,这些解决方案可以在越来越具有挑战性的安全环境中保护当前和新兴的威胁。索引术语 - 硬件安全性,网络安全性,缓存侧通道,加密指令集扩展,故障输入,内存加密,电源分析攻击,RISC-V,安全启动,侧通道耐药设计,投机性执行
摘要 - 公共道路上自动驾驶(AD)技术的快速部署提出了重大的社会挑战。莱达(LiDar)的安全性(光检测和范围)是AD部署的新挑战之一,因为它通过准确的3D环境感知在启用4级自治方面至关重要。最近的研究线表明,LiDar欺骗攻击可能会损害LIDAR,从而通过向LIDAR发射恶意激光来覆盖合法感知。然而,以前的研究仅在受控环境中成功证明了它们的攻击,但是在现实的高速,长距离广告场景中攻击的可行性中存在差距。为了弥合这些差距,我们设计了一个新型移动的车辆欺骗(MVS)系统,该系统由3个子系统组成:激光雷达检测和跟踪系统,自动摄像机系统和激光雷达欺骗系统。此外,我们设计了一种新的对象去除攻击,一种自适应的高频去除(A-HFR)攻击,即使对脉冲指纹特征的最近激光雷达,也可以通过利用目标LIDARS扫描时间的灰色盒子知识来有效。使用我们的MVS系统,我们不仅是第一个展示激光欺骗对实际广告方案的攻击,在这种情况下,受害者车辆以高速行驶(60 km/h)驾驶,而且该攻击是从长距离(110米)发射的,而且我们也是第一次对雷达欺骗的攻击实际上由流行的行驶行驶,实际上是通过流行的行驶攻击的人。我们的对象去除攻击实现了≥96%的攻击成功率,以驾驶60 km/h的车辆到制动距离(20米)。最后,我们讨论了与我们的MVS系统攻击的可能对策。这项研究不仅弥合了LiDAR安全性与AD安全研究之间的关键差距,而且为建立针对新兴威胁的强大对策奠定了基础。
安全主任于2025年1月3日星期五发布了公告,标题为“车辆撞击:政府降低风险的整个方法”。安全总监公告之所以发行,是因为当地人必须了解他们在减轻与此类攻击相关的风险方面发挥着至关重要的作用。尽管当地执法机构可能要承担事件安全和一般警务职责以保护其社区,但在涉及“整个政府方法”时,可以更好地实现车辆撞击袭击和其他形式的目标大规模暴力。合作涉及公共工程,消防,EMS,市政或县工程师,当地专业规划师,当地财政官员,当选官员,应急管理协调员,城市经理等的关键利益相关者,对于降低此类攻击的风险和确保社区安全和安全的风险至关重要。
摘要 — 联邦学习是一种使多个设备能够共同训练共享模型而不共享原始数据的方法,从而保护数据隐私。然而,联邦学习系统在训练和更新阶段容易受到数据中毒攻击。使用 CIC 和 UNSW 数据集,在十分之一的客户端的 FL 模型上测试了三种数据中毒攻击 - 标签翻转、特征中毒和 VagueGAN。对于标签翻转,我们随机修改良性数据的标签;对于特征中毒,我们改变随机森林技术识别出的具有高度影响力的特征;对于 VagueGAN,我们使用生成对抗网络生成对抗样本。对抗样本只占每个数据集的一小部分。在本研究中,我们改变了攻击者修改数据集的百分比,以观察它们对客户端和服务器端的影响。实验结果表明,标签翻转和 VagueGAN 攻击不会显著影响服务器准确性,因为它们很容易被服务器检测到。相比之下,特征中毒攻击会巧妙地削弱模型性能,同时保持较高的准确率和攻击成功率,凸显了其隐蔽性和有效性。因此,特征中毒攻击可以操纵服务器,而不会显著降低模型准确率,这凸显了联邦学习系统面对此类复杂攻击的脆弱性。为了缓解这些漏洞,我们探索了一种名为“随机深度特征选择”的最新防御方法,该方法在训练期间将服务器特征随机化为不同大小(例如 50 和 400)。事实证明,该策略在最大程度地降低此类攻击的影响(尤其是在特征中毒方面)方面非常有效。
网络安全在维持个人用户信息(例如密码和PIN代码)的机密性和完整性方面面临着重大挑战。每天,数十亿用户会接触到请求敏感信息的假登录页面。有很多方法可以欺骗用户访问网站,例如网络钓鱼电子邮件,诱饵和开关广告,click插齿,恶意软件,SQL注入,会话劫持,中间人,中间人,拒绝服务和跨站点脚本攻击。Web欺骗或网络钓鱼是一种电子技巧,其中攻击者会创建合法网页的恶意副本,并请求个人用户信息(例如密码)。为了打击此类攻击,研究人员提出了几种安全策略,但它们遭受了延迟和准确性问题的困扰。为了克服此类问题,我们建议并开发一种基于机器学习技术的客户端防御机制,以检测伪造的网站并保护用户免于网络钓鱼攻击。作为概念证明,开发了一个名为PhishCatcher的Google Chrome扩展程序,该扩展名实现了机器学习算法以将URL归类为可疑或值得信赖。该算法采用四种不同类型的Web功能作为输入,并使用随机森林分类器来确定登录网页是否是假的。为了评估扩展的准确性和精度,在实际Web应用程序上进行了一些实验。实验结果表明,从400个分类的网络钓鱼URL和400个合法URL的实验中,实验的惊人精度为98.5%,精度为98.5%。PhishCatcher记录的平均响应时间仅为62.5毫秒。为测量工具的潜伏期,还进行了40多个网络钓鱼URL的实验。
